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Abstract – We study oscillation death (OD) in a well-known coupled-oscillator system that has
been used to model cardiovascular phenomena. We derive exact analytic conditions that allow
the prediction of OD through the two known bifurcation routes, in the same model, and for
different numbers of coupled oscillators. Our exact analytic results enable us to generalize OD as
a multiparameter-sensitive phenomenon. It can be induced, not only by changes in couplings, but
also by changes in the oscillator frequencies or amplitudes. We observe synchronization transitions
as a function of coupling and confirm the robustness of the phenomena in the presence of noise.
Numerical and analogue simulations are in good agreement with the theory.

Copyright c© EPLA, 2009

Coupled-oscillator systems exhibit a variety of phenom-
ena relevant to physics, biology, and other branches
of science and technology. Here, we study oscillation
death (OD)1, a form of synchronization [1] in which the
oscillators interact in such a way as to quench each other’s
oscillations [2–5]. This intriguing phenomenon was noted
in the 19th century by Rayleigh [1], who found that adja-
cent organ pipes of the same pitch can reduce each other to
silence. Since then, OD has been studied in diverse applica-
tions including oceanography [6], chemical engineering [7],
solid-state lasers [8] and a variety of other experimental
systems [3,9–11]. OD is known to occur via two distinct
bifurcation mechanisms: i) Hopf bifurcation, where the
coupling induces stability at the origin of the phase space,
thus collapsing the orbits to zero, which can happen only
if the oscillators are sufficiently different [4,12–15] (or for
identical oscillators if there are delays [16,17] in the
coupling); or ii) for non-identical oscillators, saddle-node
bifurcation [3] in which new fixed points appear on/near
the coupled limit cycles, annihilating the periodic orbits.
Recently, Karnatak et al. [18] were able to produce OD in
two identical coupled oscillators through the saddle-node
route, using dissimilar non-delayed coupling.
In this letter, we show that a coupled-oscillator system,

which has been used extensively in modeling coupled

(a)E-mail: jjsuarez@ivic.ve
1Sometimes known as amplitude death, which can be misleading

where death occurs at finite oscillation amplitude.

rhythmic processes in mathematics, physics and biol-
ogy [19] can undergo OD via both bifurcation routes. We
obtain exact analytic conditions for OD, and compare the
theory with numerical simulations and analogue electronic
experiments. We thus generalize OD as a phenomenon
that occurs, not only through coupling-increased dissipa-
tivity [1], but also when a measure of dispersion among
the parameters of the coupled system is exceeded [20].
We also show that, near the onset of death, the coupled
system alternates between periodic, quasiperiodic and
even chaotic behavior, reflecting the complex temporal
variability observed in real biological systems [21,22].
Our model is a set of five coupled oscillators that

successfully reproduces many phenomena seen in the
cardiovascular system (CVS), e.g., modulation [23] and
synchronization [24]. Each oscillator has its own char-
acteristic frequency and amplitude [25] (see table 1)
and emulates a particular physiological function. Heart
and respiration are obvious physiological processes;
the myogenic oscillation is related to the intrinsic self-
regulatory activity of the smooth muscle tissue in the
walls of the blood vessels; the neurogenic oscillation is
associated with the neural control by the central nervous
system; and the nitric oxide related endothelial oscillation
is associated with metabolic activity mediated by the
endothelial tissue that lines the whole CVS2.

2The additional nitric oxide independent endothelial oscillatory
process at about 0.007Hz [25] does not affect the results reported in
this paper.

38008-p1
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Table 1: Typical values of frequency (Hz) and relative ampli-
tude (arbitrary units) of physiological rhythms in humans,
as measured in blood flow by laser-Doppler flowmetry and
analysed by wavelet transform. The characteristic frequencies
vary around the values indicated; the amplitudes are only esti-
mated based on measurements [23,25].

Activity Frequency Amplitude
Heart 1.1Hz 0.5 a.u.
Respiration 0.3Hz 1.0 a.u.
Myogenic 0.1Hz 1.0 a.u.
Neurogenic 0.04Hz 1.0 a.u.
Endothelial 0.01Hz 0.5 a.u.

The basic unit,

ẋi =−xiqi− yiωi+Pi(X,Y)

ẏi =−yiqi+xiωi+Qi(X,Y),
(1)

is the Poincaré oscillator [19] with: i= 1,. . . , m, (m= 5);

qi = α
(

√

(x2i + y
2
i )− ai

)

; ai, ωi = 2πfi and α are

constants that represent amplitude, frequency and
dissipation rate, respectively. X and Y ∈ Rm, and Pi,
Qi :R

m→R are scalar coupling functions. We suppose
that the inter-oscillator interactions can be approximated

by a mean field, so that Pi(X,Y) =
1
m

∑5
j=1 xj , and

Qi(X, Y ) = 0.
We now review briefly some basic concepts, assuming

an autonomous n-dimensional dynamical system:

Ż=F(Z), (2)

where Z∈Rn and F :Rn→Rn is a general non-linear
vector function. All the points, Z∗, in phase space satis-
fying the equation F(Z∗) = 0, are called fixed points of
the dynamical system (2). Their stability and quality can
be determined by the eigenvalues of the Jacobi matrix,
provided their real parts are non-zero:

det

{

∂F(Z)

∂Z
|Z=Z∗ −λI

}

= 0. (3)

We consider first the case of two coupled oscillators,
modelling, e.g., the cardio-respiratory interactions,

ẋ1 =−x1α
(
√

x21+ y
2
1 − a1

)

− y1ω1+ ǫ(x1+x2),

ẏ1 =−y1α
(
√

x21+ y
2
1 − a1

)

+x1ω1,

ẋ2 =−x2α
(
√

x22+ y
2
2 − a2

)

− y2ω2+ ǫ(x1+x2),

ẏ2 =−y2α
(
√

x22+ y
2
2 − a2

)

+x2ω2.

(4)

Here the origin is always a fixed point. For ǫ= 0, this
point is unstable (focus or node). Besides this fixed point,
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Fig. 1: (Colour on-line) Saddle-node bifurcation diagram show-
ing the appearance of new equilibria and their stability for
the coupled system (4). The dashed (red) line corresponds to
unstable fixed points, while the continuous (blue) line depicts
the stable ones.

there is a stable limit cycle, corresponding to autonomous
oscillations. Equation (3) for the point Z∗ = 0 and ǫ �= 0
in the dynamical system (4) will be:

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(αa1+ ǫ)−λ −ω1 ǫ 0

ω1 αa1−λ 0 0

ǫ 0 (αa2+ ǫ)−λ −ω2
0 0 ω2 αa2−λ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0.

(5)

From (5) we determine that the origin can become a stable
fixed point if

2αa1+ ǫ < 0,

2αa2+ ǫ < 0,
(6)

in which case the limit cycle no longer exists. Thus, if
a2 >a1, then ǫ <−2αa2 is a sufficient condition for OD.
This is the Hopf bifurcation route to OD, and it occurs
only for negative ǫ.
For ǫ > 0, there is a critical value ǫc such that, for
ǫ > ǫc, four new fixed points appear: two unstable and
two asymptotically stable. In order to make numerical
estimations from our model we make use of the extensive
earlier research on the CV system [23,25] embodied in
the frequencies and amplitude relationships summarised
in table 1, so that we take a1/a5 ≈ 1, a1/ai ≈ 0.5, for
i= {2, 3, 4}.
Figure 1 shows the bifurcation diagram for x1,

calculated for a1 = 0.5, a2 = 1, f1 = 1.1, f2 = 0.3 and
α= 1. Note that for this range of ǫ > 0 the origin is always
an unstable fixed point. The end of the oscillations is
marked by the appearance of the new fixed points at
ǫ∼ 3.578. They are obtained from the set of algebraic
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equations:

−x1α
(

√

x21+ y
2
1 − a1

)

− y1ω1+ ǫ(x1+x2) = 0,

−y1α
(

√

x21+ y
2
1 − a1

)

+x1ω1 = 0,

−x2α
(

√

x22+ y
2
2 − a2

)

− y2ω2+ ǫ(x1+x2) = 0,

−y2α
(

√

x22+ y
2
2 − a2

)

+x2ω2 = 0.

(7)

After some algebra, we obtain the relations:

ω1(x
2
1+ y

2
1) = ǫy1(x1+x2),

ω2(x
2
2+ y

2
2) = ǫy2(x1+x2).

(8)

The analysis of eq. (8) combined with eq. (7) shows that,
for ǫ≪ 2ω1 and ǫ≪ 2ω2, the only fixed point is (0, 0,
0, 0). For sufficiently large values of ǫ, we obtain four new
fixed points. The fixed points can appear only in pairs of
stable-unstable points. This is the saddle-node bifurcation
route to OD, which occurs only for positive ǫ.
We now define x1 = r1 cos (Φ1), y1 = r1 sin (Φ1), x2 =
r2 cos (Φ2), y2 = r2 sin (Φ2), where r

2
1 = x

2
1+ y

2
1 , r

2
2 = x

2
2+

y22 . As in our model ω1≫ ω2, a2 >a1, which implies
(x01)

2≪ (x02)2; where x0i and y0i are the system’s fixed
points. From eq. (8) we obtain the equality

ω2 = ǫ cos (Φ2) sin (Φ2). (9)

This is equivalent to the equation

2ω2
ǫ
= sin (2Φ2). (10)

As sin(2Φ2)� 1, this means that we have new solutions to
the algebraic equations (7) only when

ǫ > 2ω2. (11)

Equation (11) provides a simple and understandable
analytic estimate of the critical value for the bifurcation.
Figure 2 (top) illustrates a numerical simulation of the

coupled oscillators (4) near criticality, showing how the
oscillations evolve as ǫ is increased by steps of 0.1. We
have established that, for the chosen parameter values,
the oscillations die when ǫc ≈ 3.578, gratifyingly close to
the ǫc ≈ 4πf2 = 3.77 predicted by (11). The difference
is attributable to the approximations made in deriving
eq. (11). Using the same values of parameters, we also
performed numerical simulations for negative ǫ, fig. 2
(bottom), and found that OD occurs through supercritical
Hopf bifurcation when ǫ∼−1.88, in agreement with the
theoretical prediction (6).
We have also used the above mathematical tools to

investigate the full model [23] with five coupled oscillators
(i= 1, . . . , 5). Solutions of the algebraic equations

0 =−xiqi− yiωi+ ǫ
5
∑

j=1

xj ,

0 =−yiqi+xiωi,
(12)

Fig. 2: (Colour on-line) Top: time series of x1(t) (bold curve)
and x2(t) from numerical simulations of the system (4),
showing saddle-node OD. Parameter values were the same as
in fig. 1. The dashed line shows the step-wise variation of
the coupling constant ǫ in a positive range. Note that after
OD has occurred lim

t→∞
{x1(t), x2(t)}> 0. Bottom: time series of

x1(t) and x2(t) from numerical simulations of the system (4),
showing supercritical Hopf bifurcation OD. Parameter values
were the same as in fig. 1. The diagonal stepped line starting
at the origin indicates how ǫ was varied in the negative range.
In this case lim

t→∞
{x1(t), x2(t)}> 0, after OD has occurred.

Note the difference in abscissa timescales between the top and
bottom parts of the figure.

correspond to the fixed points of (1) for five coupled
oscillators. After some calculations we get the equations

ωi(x
2
i + y

2
i ) = ǫyi

∑

xj . (13)

We have found that, for ǫ > ǫc, where ǫc is some critical
value, the system possesses four additional fixed points
(two stable and two unstable).
Because ωi = 2πfi, and using the empirical physiologi-

cal values (table 1) for the fi’s and ai’s mentioned above,
we can use the inequalities ω5 <ω4 <ω3 <ω2 <ω1,
and a21 = a

2
5 <a

2
2 = a

2
3 = a

2
4, in order to obtain an

analytic expression for ǫc. The resulting approxi-
mate equations lead to the following relations for
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Fig. 3: (Colour on-line) Simulations of the coupled system (1)
using five oscillators, as ǫ is increased in steps of 0.1. Parameter
values are based on physiology (see text). (a) Numerical simu-
lation showing the outputs from all five oscillators, exhibiting
OD for ǫ≈ 0.47. (b) Analogue electronic simulation, showing
the output from the first oscillator x1.

the systems’ fixed points:
∑

xj ≈ ω1a1; x01 ≈ y04 ≈ y05 ≈ 0;

x03 ≈ x04 ≈ x05 ≈ x∗, where x∗ =
a5α+
√
a2
5
α2+4ω1a1α

2α ; y01 ≈ a1;

y02 =
(a1ω1−a

2

2
α)+
√
(ω1a1−αa22)

2+4a3
2
αω2

2ω2
.

The new simplified equation (13), with i= 2, is

ω2((x
0
2)
2+(y02)

2) = ǫy02x
0
2+ ǫ3x∗y

0
2 . (14)

The new stable fixed points are possible when

y02ǫ
2+12x∗ω2ǫ− 4ω22y02 > 0. (15)

The asymptotically stable equilibrium points are the new
attractors of the dynamical system.
Using physiologically estimated values for the parame-

ters (table 1) in (15) we obtain that ǫc ≈ 0.468. This result
is in agreement with the numerical simulations shown on
fig. 3(a), where there is OD for ǫ≈ 0.47.
We have also modeled the dynamics of the five-oscillator

system for the given parameter values using analogue elec-
tronic circuits [26]. The result of fig. 3(b) shows the exper-
imental observation of OD in good qualitative agreement
with both the theory and numerical simulations.
We have found that, just before the onset of death,

the 2-oscillator system (4) exhibits highly complex,
quasiperiodic and chaotic, behavior. Figure 4(a) plots the
x1-y1 phase diagram when ǫ= 3.578≈ ǫc. For comparison
the circle in the background shows the limit cycle when
ǫ= 0, and the two full (green) spots signal the place where
the new fixed points will arise. The attractor’s structure,
the seemingly random amplitudes of the time series, the
lengthening of the period with a square-root scaling, and
the power-law–like spectrum, indicate that the system
enters a chaotic regime just before it dies. Figure 4(b)
shows the first-return maps (FRM) of the discrete
instantaneous period and amplitude signals obtained by
sampling x1(t) at the peaks. We observe strong period and
amplitude variability in the FRM, with the period show-
ing a multimodal distribution. The amplitude of peaks

Fig. 4: (Colour on-line) Behavior of the coupled system (4) for
ǫ= 3.578, very close to death. Row (a): attractor in x1-y1 space,
time series x1(t) and its Fourier transform. Row (b): first-return
maps of the instantaneous period and amplitude signals.

has a more uniform distribution showing fewer preferred
values, and the amplitude difference between successive
peaks is distributed normally. In terms of the cardiovas-
cular analogue this complex behavior might be seen as
a predictor of imminent death of the cardio-respiratory
coupled oscillations. Moreover, multimodal period distrib-
utions are typical of the time variability observed in other
biological systems, e.g., the intermitotic time of human
skeletal cells, and moments of change in the rotation
direction of flagella [22]. It is evident that, at least in this
kind of coupled biological system, the variability of the
oscillations increases near the onset of global bifurcations.
Thus, OD in (1) can occur via both of the known routes.

When ǫ is negative and below a critical value, the origin
becomes asymptotically stable and the oscillations die
at almost constant frequency, i.e., the Hopf bifurcation
scenario. In the second mechanism, OD occurs when new
fixed points appear on the former attractor after ǫ has
surpassed a positive threshold: the amplitude remains
almost constant while the frequency decreases with a
square-root scaling in a saddle-node bifurcation.
When a system arrives in the OD regime it lies quies-

cent. Although apparently trivial, this state results from
diverse complex interactions between the coupled elements
that form the system, as we show in this letter. Thus OD
can be seen as another kind of complex collective motion,
much in the same way as synchronization arises in complex
coupled systems as a self-organized dynamics.
In order to complete the analysis of system (1) in

this context we investigate the relationship between
synchronization and OD by measuring the synchroniza-
tion index [1], defined as: γ1,1 = 〈cosΨ1,1〉2+ 〈sinΨ1,1〉2,
where Ψ1,1 is the relative phase difference between
the oscillators. This index measures quantitatively the
strength of 1 : 1 synchronization.
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Fig. 5: Synchronization index γ1,1 as a function of the coupling
strength ǫ for the system (1).

Figure 5 shows the calculated values of γ1,1 as a func-
tion of ǫ for the coupled system (1). Initially γ1,1 is very
small for low values of ǫ and it increases monotonically in a
quasiexponential fashion as ǫ is increased. However, when
ǫ reaches a value near 3.15, γ1,1 no longer grows monoton-
ically, but has alternating epochs of growth and decrease,
corresponding to topological changes in the structure of
the attractors of both oscillators that lead to complex
transitions in the 1:1 synchronization state. These results
suggest that the transient epochs of cardio-respiratory
synchronization seen (for higher synchronization ratios) in
many studies of resting humans, both awake [27–29] and
asleep [30], may arise in part from changes in coupling,
as well as from drifts in the natural frequencies and other
parameters.
Finally, in order to explore the robustness of our results

in a more realistic framework, we performed simulations
of system (1) including the presence of stochastic forces,
since they can lead to spurious detection of complex
phenomena [31]. Our stochastic model is

ẋi =−xiqi− yiωi+ ǫ(x1+x2)+Dξx,
ẏi =−yiqi+xiωi,

(16)

where ξx corresponds to white Gaussian noise with zero
mean and variance D2.
The simulation of eq. (16) is shown in fig. 6. The

parameters used in this noisy equation are the same as
those used for eq. (1), besides D= 1.0. In the top panel,
ǫ was piecewise increased through a range of positive
values, and OD was observed to occur at a value very
close to the noiseless case, ǫ= 3.57. Similarly in fig. 6
(bottom) ǫ was piecewise increased but now in the negative
direction. OD was still observed, at a value near that
of the noiseless case, ǫ=−1.8. Thus the noise term in
eq. (16) does not eliminate, or change the nature of, the
bifurcations leading to the appearance of OD; however,
it influences the asymptotic value of the fixed points to
which the system evolves.
In our study of OD we have obtained analytic relations

predicting the onset of OD in the CV model, both for two

Fig. 6: Temporal behavior of the noisy system (16) as ǫ is varied
piecewisely. Top: ǫ increases positively and OD is observed near
ǫ= 3.57. Bottom: ǫ decreases negatively and OD is observed
near ǫ=−1.8. In both cases noise intensity is D= 1.

and five coupled oscillators, using assumptions provided
by experimental physiological measurements. In addition,
all the theoretical results have been verified in numerical
simulations. We have also observed partial OD [32] in our
numerical model, where some oscillators die while others
remain active. It occurs if the eigenvalues corresponding
to certain variables xi and yi have negative real parts,
while those corresponding to other oscillator variables
do not have this property. For instance, this happens if
2αai+ ǫ < 0. See fig. 2 (bottom).
Discussions of OD usually focus on the strength of the

coupling coefficient. The common phrase is that “for large
couplings, amplitude death will take place”. However, now
that we have analytic expressions for the critical value,
also depending on other parameters, we can predict the
onset of OD when different parameters are changed: OD is
evidently a multiparameter-sensitive phenomenon. It can
be induced, not only by changes in couplings, but also
by changes in the oscillator frequencies and amplitudes.
For instance, the analytic conditions for OD given by (6)
indicate that, if the amplitude parameters a1 and a2
decrease (in fact it is sufficient to decrease the largest
one), then OD can occur for two coupled oscillators even
when the coupling coefficient remains constant. The same
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can happen if the excitability parameter α is decreased
below a critical value. Another interesting feature of OD
inferred from (11) and (15) is that, if ǫ > 0, and ǫ > ǫc,
new asymptotically stable fixed points can appear. Thus
the oscillations die, but the dynamical variables can take
non-zero asymptotic values. We remark that the critical
value ǫc depends on the oscillators’ frequencies. That is,
even for fixed coupling strength ǫ, if the frequency of one
of the oscillators falls below some critical value, then all
the coupled system can stop dead. This behavior is true
both for two or five coupled oscillators.
What are the implications of these results for the CVS?

Given that (1) successfully models many features and
states of the CVS, we may speculate that phenomena
analogous to OD may also occur there. It would mean
that, for certain parameter combinations, the mutual
interactions between the cardiac, respiratory, myogenic,
neurogenic and endothelial oscillators might serve to bring
one or all of them to a halt —or at least to inhibit function.
The treatment to prevent or remedy such a scenario might
involve the use of drugs to modify some of the parameters
α, ai or ωi so as to take the individual away from the
regime of danger.
These results could also be applicable to coupled arrays

of neurons in the brain. In the first demonstration of OD
in a biological system Ozden et al. [9] coupled a man-made
device to an array of real neurons and OD was provoked
by taking the system into the strong-coupling regime.
We hypothesize that similar results could be obtained in
response to frequency changes, according to rules similar
to (6) or (11). The system would not then need to be in the
strong-coupling regime, which in some cases could damage
sensitive biological tissues.
In summary, we have shown analytically and through

simulations that OD in the CVS model (1) can occur via
either of the known bifurcation mechanisms. Furthermore,
OD can be induced, not only by an increase in coupling
strength as conventionally accepted, but also by changes
of, e.g., amplitude and/or frequency. We have shown it
to be sensitive to many different parameters. Connections
between OD in the model, and phenomena in the CVS,
appear possible but remain to be explored.
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[28] Lotrič M. B. and Stefanovska A., Physica A, 283
(2000) 451.

[29] Kenwright D. A., Bahraminasab A., Stefanovska
A. and McClintock P. V. E., Eur. Phys. J. B, 65
(2008) 425.

[30] Bartsch R., Kantelhardt J., Penzel T. and Havlin
S., Phys. Rev. Lett., 98 (2007) 054102.

[31] Xu L., Chen Z., Hu K., Stanley H. and Ivanov P.,
Phys. Rev. E, 73 (2006) 065201.

[32] Liu W., Xiao J. and Yang J., Phys. Rev. E, 72 (2005)
057201.

38008-p6


