175 research outputs found
Individual-Based Modeling: Mountain Pine Beetle Seasonal Biology in Response to Climate
Over the past decades, as significant advances were made in the availability and accessibility of computing power, individual-based models (IBM) have become increasingly appealing to ecologists (Grimm 1999). The individual-based modeling approachprovides a convenient framework to incorporate detailed knowledge of individuals and of their interactions within populations (Lomnicki 1999). Variability among individuals is essential to the success of populations that are exposed to changing environments, and because natural selection acts on this variability, it is an essential component of population performance. © Springer International Publishing Switzerland 2015
Optimized intermolecular potential for nitriles based on Anisotropic United Atoms model
An extension of the Anisotropic United Atoms intermolecular potential model is proposed for nitriles. The electrostatic part of the intermolecular potential is calculated using atomic charges obtained by a simple Mulliken population analysis. The repulsion-dispersion interaction parameters for methyl and methylene groups are taken from transferable AUA4 literature parameters [Ungerer et al., J. Chem. Phys., 2000, 112, 5499]. Non-bonding Lennard-Jones intermolecular potential parameters are regressed for the carbon and nitrogen atoms of the nitrile group (–C≡N) from experimental vapor-liquid equilibrium data of acetonitrile. Gibbs Ensemble Monte Carlo simulations and experimental data agreement is very good for acetonitrile, and better than previous molecular potential proposed by Hloucha et al. [J. Chem. Phys., 2000, 113, 5401]. The transferability of the resulting potential is then successfully tested, without any further readjustment, to predict vapor-liquid phase equilibrium of propionitrile and n-butyronitrile
Breeding amphibians in captivity
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/73877/1/j.1748-1090.1977.tb00864.x.pd
Object Affordances Tune Observers' Prior Expectations about Tool-Use Behaviors
Learning about the function and use of tools through observation requires the ability to exploit one's own knowledge derived from past experience. It also depends on the detection of low-level local cues that are rooted in the tool's perceptual properties. Best known as ‘affordances’, these cues generate biomechanical priors that constrain the number of possible motor acts that are likely to be performed on tools. The contribution of these biomechanical priors to the learning of tool-use behaviors is well supported. However, it is not yet clear if, and how, affordances interact with higher-order expectations that are generated from past experience – i.e. probabilistic exposure – to enable observational learning of tool use. To address this question we designed an action observation task in which participants were required to infer, under various conditions of visual uncertainty, the intentions of a demonstrator performing tool-use behaviors. Both the probability of observing the demonstrator achieving a particular tool function and the biomechanical optimality of the observed movement were varied. We demonstrate that biomechanical priors modulate the extent to which participants' predictions are influenced by probabilistically-induced prior expectations. Biomechanical and probabilistic priors have a cumulative effect when they ‘converge’ (in the case of a probabilistic bias assigned to optimal behaviors), or a mutually inhibitory effect when they actively ‘diverge’ (in the case of probabilistic bias assigned to suboptimal behaviors)
Why Do Dolphins Carry Sponges?
Tool use is rare in wild animals, but of widespread interest because of its relationship to animal cognition, social learning and culture. Despite such attention, quantifying the costs and benefits of tool use has been difficult, largely because if tool use occurs, all population members typically exhibit the behavior. In Shark Bay, Australia, only a subset of the bottlenose dolphin population uses marine sponges as tools, providing an opportunity to assess both proximate and ultimate costs and benefits and document patterns of transmission. We compared sponge-carrying (sponger) females to non-sponge-carrying (non-sponger) females and show that spongers were more solitary, spent more time in deep water channel habitats, dived for longer durations, and devoted more time to foraging than non-spongers; and, even with these potential proximate costs, calving success of sponger females was not significantly different from non-spongers. We also show a clear female-bias in the ontogeny of sponging. With a solitary lifestyle, specialization, and high foraging demands, spongers used tools more than any non-human animal. We suggest that the ecological, social, and developmental mechanisms involved likely (1) help explain the high intrapopulation variation in female behaviour, (2) indicate tradeoffs (e.g., time allocation) between ecological and social factors and, (3) constrain the spread of this innovation to primarily vertical transmission
Millennials in the Workplace: A Communication Perspective on Millennials’ Organizational Relationships and Performance
Stereotypes about Millennials, born between 1979 and 1994, depict them as self-centered, unmotivated, disrespectful, and disloyal, contributing to widespread concern about how communication with Millennials will affect organizations and how they will develop relationships with other organizational members. We review these purported characteristics, as well as Millennials’ more positive qualities—they work well in teams, are motivated to have an impact on their organizations, favor open and frequent communication with their supervisors, and are at ease with communication technologies. We discuss Millennials’ communicated values and expectations and their potential effect on coworkers, as well as how workplace interaction may change Millennials
- …