1,713 research outputs found

    Classifying LEP Data with Support Vector Algorithms

    Get PDF
    We have studied the application of different classification algorithms in the analysis of simulated high energy physics data. Whereas Neural Network algorithms have become a standard tool for data analysis, the performance of other classifiers such as Support Vector Machines has not yet been tested in this environment. We chose two different problems to compare the performance of a Support Vector Machine and a Neural Net trained with back-propagation: tagging events of the type e+e- -> ccbar and the identification of muons produced in multihadronic e+e- annihilation events.Comment: 7 pages, 4 figures, submitted to proceedings of AIHENP99, Crete, April 199

    On the coupling of massless particles to scalar fields

    Get PDF
    It is investigated if massless particles can couple to scalar fields in a special relativistic theory with classical particles. The only possible obvious theory which is invariant under Lorentz transformations and reparametrization of the affine parameter leads to trivial trajectories (straight lines) for the massless case, and also the investigation of the massless limit of the massive theory shows that there is no influence of the scalar field on the limiting trajectories. On the other hand, in contrast to this result, it is shown that massive particles are influenced by the scalar field in this theory even in the ultra-relativistic limit.Comment: 9 pages, no figures, uses titlepage.sty, LaTeX 2.09 file, submitted to International Journal of Theoretical Physic

    Determination of the Weak Axial Vector Coupling from a Measurement of the Beta-Asymmetry Parameter A in Neutron Beta Decay

    Full text link
    We report on a new measurement of the neutron beta-asymmetry parameter AA with the instrument \perkeo. Main advancements are the high neutron polarization of P=99.7(1)P = 99.7(1)% from a novel arrangement of super mirror polarizers and reduced background from improvements in beam line and shielding. Leading corrections were thus reduced by a factor of 4, pushing them below the level of statistical error and resulting in a significant reduction of systematic uncertainty compared to our previous experiments. From the result A0=0.11996(58)A_0 = -0.11996(58), we derive the ratio of the axial-vector to the vector coupling constant λ=gA/gV=1.2767(16)\lambda = g_\mathrm{A}/g_\mathrm{V} = -1.2767(16)Comment: 5 pages, 4 figure

    Measurement of the Neutrino Asymmetry Parameter B in Neutron Decay

    Full text link
    A new measurement of the neutrino asymmetry parameter B in neutron decay, the angular correlation between neutron spin and anti-neutrino momentum, is presented. The result, B=0.9802(50), agrees with the Standard Model expectation and earlier measurements, and permits improved tests on ``new physics'' in neutron decay.Comment: 4 pages, 2 figures; v2: revised PRL versio

    Experimental study of ultracold neutron production in pressurized superfluid helium

    Get PDF
    We have investigated experimentally the pressure dependence of the production of ultracold neutrons (UCN) in superfluid helium in the range from saturated vapor pressure to 20bar. A neutron velocity selector allowed the separation of underlying single-phonon and multiphonon pro- cesses by varying the incident cold neutron (CN) wavelength in the range from 3.5 to 10{\AA}. The predicted pressure dependence of UCN production derived from inelastic neutron scattering data was confirmed for the single-phonon excitation. For multiphonon based UCN production we found no significant dependence on pressure whereas calculations from inelastic neutron scattering data predict an increase of 43(6)% at 20bar relative to saturated vapor pressure. From our data we conclude that applying pressure to superfluid helium does not increase the overall UCN production rate at a typical CN guide.Comment: 18 pages, 8 figures Version accepted for publication in PR

    Width of the QCD transition in a Polyakov-loop DSE model

    Get PDF
    We consider the pseudocritical temperatures for the chiral and deconfinement transitions within a Polyakov-loop Dyson-Schwinger equation approach which employs a nonlocal rank-2 separable model for the effective gluon propagator. These pseudocritical temperatures differ by a factor of two when the quark and gluon sectors are considered separately, but get synchronized and become coincident when their coupling is switched on. The coupling of the Polyakov-loop to the chiral quark dynamics narrows the temperature region of the QCD transition in which chiral symmetry and deconfinement is established. We investigate the effect of rescaling the parameter T_0 in the Polyakov-loop potential on the QCD transition for both the logarithmic and polynomial forms of the potential. While the critical temperatures vary in a similar way, the width of the transition is stronger affected for the logarithmic potential. For this potential the character of the transition changes from crossover to a first order one when T_0 < 210 MeV, but it remains crossover in the whole range of relevant T_0 values for the polynomial form.Comment: 10 pages, 6 figures, results for polynomial form of Polyakov-loop potential included, references added, final version to appear in Phys. Rev.

    Performance requirements analysis for payload delivery from a space station

    Get PDF
    Operations conducted from a space station in low Earth orbit which have different constraints and opportunities than those conducted from direct Earth launch were examined. While a space station relieves many size and performance constraints on the space shuttle, the space station's inertial orbit has different launch window constraints from those associated with customary Earth launches which reflect upon upper stage capability. A performance requirements analysis was developed to provide a reference source of parametric data, and specific case solutions and upper stage sizing trade to assist potential space station users and space station and upper stage developers assess the impacts of a space station on missions of interest

    The D coefficient in neutron beta decay in effective field theory

    Full text link
    In this paper we explore the time-reversal-odd triple-correlation coefficient in neutron beta decay, the so-called "D coefficient", using heavy-baryon effective field theory with photon degrees of freedom. We find that this framework allows us to reproduce the known results for the contribution which comes from final-state interactions, and also to discuss higher-order corrections. In particular we are able to show that in the heavy-baryon limit all electromagnetic contributions vanish. By calculating the leading correction to the known result, we give a final expression which is accurate to better than 1%. Hence we extend downwards the range over which the D coefficient could be used to explore time-violation from new physics.Comment: 12c pages, 3 eps figures Version accepted for publication in Physics Letters B; minor changes of wordin
    corecore