288 research outputs found

    Microwave whirlpools in a rectangular-waveguide cavity with a thin ferrite disk

    Full text link
    We study a three dimensional system of a rectangular-waveguide resonator with an inserted thin ferrite disk. The interplay of reflection and transmission at the disk interfaces together with material gyrotropy effect, gives rise to a rich variety of wave phenomena. We analyze the wave propagation based on full Maxwell-equation numerical solutions of the problem. We show that the power-flow lines of the microwave-cavity field interacting with a ferrite disk, in the proximity of its ferromagnetic resonance, form whirlpool-like electromagnetic vortices. Such vortices are characterized by the dynamical symmetry breaking. The role of ohmic losses in waveguide walls and dielectric and magnetic losses in a disk is a subject of our investigations

    Mesoscopic quantized properties of magnetic-dipolar-mode oscillations in disk ferromagnetic particles

    Full text link
    Magnetic dipolar mode or magnetostatic (MS) oscillations in ferrite samples have the wavelength much smaller than the electromagnetic wavelength at the same frequency and, at the same time, much larger than the exchange interaction spin wavelength. This intermediate position between the electromagnetic and spin wave (exchange interaction) processes reveals very special behaviors of the geometrical effects. It was shown recently that magnetic dipolar mode oscillations in a normally magnetized ferromagnetic disk are characterized by discrete energy levels resulting from the structural confinement. In this article we give results of the energy spectra in MS wave ferrite disks taking into account nonhomogeneity of the internal DC magnetic field

    Портал «Единое окно» как платформа для репозитория учебно-методических материалов, размещаемых со свободными лицензиями

    Full text link
    The paper provides information on a pilot project aimed at setting up a Russian-language repository of Open Educational Resources (OER) developed for higher education institutions. The resources will be available under open licenses (Creative Commons family or other free licenses). This is a joint project of the State Institute of Information Technology and Telecommunications INFORMIKA and the UNESCO Institute for Information Technologies in Education (IITE).В докладе рассматривается проект создания хранилища учебно-методических материалов, создаваемых в вузах и размещаемых в открытом доступе со свободными лицензиями. Данный проект реализуется как совместная инициатива Государственного научно-исследовательского института информационных технологий и телекоммуникаций "Информика" и Института ЮНЕСКО по информационным технологиям в образовании

    Abelian and nonabelian vector field effective actions from string field theory

    Full text link
    The leading terms in the tree-level effective action for the massless fields of the bosonic open string are calculated by integrating out all massive fields in Witten's cubic string field theory. In both the abelian and nonabelian theories, field redefinitions make it possible to express the effective action in terms of the conventional field strength. The resulting actions reproduce the leading terms in the abelian and nonabelian Born-Infeld theories, and include (covariant) derivative corrections.Comment: 49 pages, 1 eps figur

    Polycation-π Interactions Are a Driving Force for Molecular Recognition by an Intrinsically Disordered Oncoprotein Family

    Get PDF
    Molecular recognition by intrinsically disordered proteins (IDPs) commonly involves specific localized contacts and target-induced disorder to order transitions. However, some IDPs remain disordered in the bound state, a phenomenon coined "fuzziness", often characterized by IDP polyvalency, sequence-insensitivity and a dynamic ensemble of disordered bound-state conformations. Besides the above general features, specific biophysical models for fuzzy interactions are mostly lacking. The transcriptional activation domain of the Ewing's Sarcoma oncoprotein family (EAD) is an IDP that exhibits many features of fuzziness, with multiple EAD aromatic side chains driving molecular recognition. Considering the prevalent role of cation-π interactions at various protein-protein interfaces, we hypothesized that EAD-target binding involves polycation- π contacts between a disordered EAD and basic residues on the target. Herein we evaluated the polycation-π hypothesis via functional and theoretical interrogation of EAD variants. The experimental effects of a range of EAD sequence variations, including aromatic number, aromatic density and charge perturbations, all support the cation-π model. Moreover, the activity trends observed are well captured by a coarse-grained EAD chain model and a corresponding analytical model based on interaction between EAD aromatics and surface cations of a generic globular target. EAD-target binding, in the context of pathological Ewing's Sarcoma oncoproteins, is thus seen to be driven by a balance between EAD conformational entropy and favorable EAD-target cation-π contacts. Such a highly versatile mode of molecular recognition offers a general conceptual framework for promiscuous target recognition by polyvalent IDPs. © 2013 Song et al

    Beta-gamma systems and the deformations of the BRST operator

    Full text link
    We describe the relation between simple logarithmic CFTs associated with closed and open strings, and their "infinite metric" limits, corresponding to the beta-gamma systems. This relation is studied on the level of the BRST complex: we show that the consideration of metric as a perturbation leads to a certain deformation of the algebraic operations of the Lian-Zuckerman type on the vertex algebra, associated with the beta-gamma systems. The Maurer-Cartan equations corresponding to this deformed structure in the quasiclassical approximation lead to the nonlinear field equations. As an explicit example, we demonstrate, that using this construction, Yang-Mills equations can be derived. This gives rise to a nontrivial relation between the Courant-Dorfman algebroid and homotopy algebras emerging from the gauge theory. We also discuss possible algebraic approach to the study of beta-functions in sigma-models.Comment: LaTeX2e, 15 pages; minor revision, typos corrected, Journal of Physics A, in pres

    Cis and trans regulatory mechanisms control AP2-mediated B cell receptor endocytosis via select tyrosine-based motifs.

    Get PDF
    Following antigen recognition, B cell receptor (BCR)-mediated endocytosis is the first step of antigen processing and presentation to CD4+ T cells, a crucial component of the initiation and control of the humoral immune response. Despite this, the molecular mechanism of BCR internalization is poorly understood. Recently, studies of activated B cell-like diffuse large B cell lymphoma (ABC DLBCL) have shown that mutations within the BCR subunit CD79b leads to increased BCR surface expression, suggesting that CD79b may control BCR internalization. Adaptor protein 2 (AP2) is the major mediator of receptor endocytosis via clathrin-coated pits. The BCR contains five putative AP2-binding YxxØ motifs, including four that are present within two immunoreceptor tyrosine-based activation motifs (ITAMs). Using a combination of in vitro and in situ approaches, we establish that the sole mediator of AP2-dependent BCR internalization is the membrane proximal ITAM YxxØ motif in CD79b, which is a major target of mutation in ABC DLBCL. In addition, we establish that BCR internalization can be regulated at a minimum of two different levels: regulation of YxxØ AP2 binding in cis by downstream ITAM-embedded DCSM and QTAT regulatory elements and regulation in trans by the partner cytoplasmic domain of the CD79 heterodimer. Beyond establishing the basic rules governing BCR internalization, these results illustrate an underappreciated role for ITAM residues in controlling clathrin-dependent endocytosis and highlight the complex mechanisms that control the activity of AP2 binding motifs in this receptor system

    Targeted Energy Transfer and Modal Energy Redistribution in Automotive Drivetrains

    Get PDF
    The new generations of compact high output power-to-weight ratio internal combustion engines generate broadband torsional oscillations, transmitted to lightly damped drivetrain systems. A novel approach to mitigate these untoward vibrations can be the use of nonlinear absorbers. These act as Nonlinear Energy Sinks (NESs). The NES is coupled to the primary (drivetrain) structure, inducing passive irreversible targeted energy transfer (TET) from the drivetrain system to the NES. During this process, the vibration energy is directed from the lower-frequency modes of the structure to the higher ones. Thereafter, vibrations can be either dissipated through structural damping or consumed by the NES. This paper uses a lumped parameter model of an automotive driveline to simulate the effect of TET and the assumed modal energy redistribution. Significant redistribution of vibratory energy is observed through TET. Furthermore, the integrated optimization process highlights the most effective configuration and parametric evaluation for use of NES
    corecore