248 research outputs found

    Interlaminar shear stresses around an internal part-through hole in a stretched laminated composite plate

    Get PDF
    Journal ArticleThe equilibrium/compatibility method, which is a semi-analytical post-processing method, is employed for computation of hitherto unavailable through-thickness variation of interlaminar (transverse) shear stresses in the vicinity of the bi-layer interface circumferential re-entrant corner line of an internal part-through circular cylindrical hole weakening an edge-loaded laminated composite plate. A Co-type triangular composite plate element, based on the assumptions of transverse inextensibility and layer-wise constant shear-angle theory (LCST), is utilized to first compute the in-plane stresses and layer-wise through-thickness average interlaminar shear stresses, which serve as the starting point for computation of through-thickness distribution of interlaminar shear stresses in the vicinity of the bi-layer interface circumferential re-entrant corner line of the part-through hole. The same stresses computed by the conventional equilibrium method (EM) are, in contrast, in serious errors in the presence of the bi-layer interface circumferential re-entrant corner line singularity arising out of the internal part-through hole, and are found to violate the interfacial compatibility condition. The computed interlaminar shear stress can vary from negative to positive through the thickness of a cross-ply plate in the neighborhood of this kind of stress singularity

    The Microsoft 2016 Conversational Speech Recognition System

    Full text link
    We describe Microsoft's conversational speech recognition system, in which we combine recent developments in neural-network-based acoustic and language modeling to advance the state of the art on the Switchboard recognition task. Inspired by machine learning ensemble techniques, the system uses a range of convolutional and recurrent neural networks. I-vector modeling and lattice-free MMI training provide significant gains for all acoustic model architectures. Language model rescoring with multiple forward and backward running RNNLMs, and word posterior-based system combination provide a 20% boost. The best single system uses a ResNet architecture acoustic model with RNNLM rescoring, and achieves a word error rate of 6.9% on the NIST 2000 Switchboard task. The combined system has an error rate of 6.2%, representing an improvement over previously reported results on this benchmark task

    The buckling of a column on equally spaced deflectional and rotational springs

    Get PDF
    A solution is presented for the problem of the buckling of a column on equally spaced deflectional and rotational springs. Useful charts, which relate deflectional spring stiffness, rotational spring stiffness, and buckling load, are given for columns having two, three, four, and infinite number of spans

    Modeling the elastic deformation of polymer crusts formed by sessile droplet evaporation

    Full text link
    Evaporating droplets of polymer or colloid solution may produce a glassy crust at the liquid-vapour interface, which subsequently deforms as an elastic shell. For sessile droplets, the known radial outward flow of solvent is expected to generate crusts that are thicker near the pinned contact line than the apex. Here we investigate, by non-linear quasi-static simulation and scaling analysis, the deformation mode and stability properties of elastic caps with a non-uniform thickness profile. By suitably scaling the mean thickness and the contact angle between crust and substrate, we find data collapse onto a master curve for both buckling pressure and deformation mode, thus allowing us to predict when the deformed shape is a dimple, mexican hat, and so on. This master curve is parameterised by a dimensionless measure of the non-uniformity of the shell. We also speculate on how overlapping timescales for gelation and deformation may alter our findings.Comment: 8 pages, 7 figs. Some extra clarification of a few points, and minor corrections. To appear in Phys. Rev.

    Volume-controlled buckling of thin elastic shells: Application to crusts formed on evaporating partially-wetted droplets

    Full text link
    Motivated by the buckling of glassy crusts formed on evaporating droplets of polymer and colloid solutions, we numerically model the deformation and buckling of spherical elastic caps controlled by varying the volume between the shell and the substrate. This volume constraint mimics the incompressibility of the unevaporated solvent. Discontinuous buckling is found to occur for sufficiently thin and/or large contact angle shells, and robustly takes the form of a single circular region near the boundary that `snaps' to an inverted shape, in contrast to externally pressurised shells. Scaling theory for shallow shells is shown to well approximate the critical buckling volume, the subsequent enlargement of the inverted region and the contact line force.Comment: 7 pages in J. Phys. Cond. Mat. spec; 4 figs (2 low-quality to reach LANL's over-restrictive size limits; ask for high-detailed versions if required

    Lack of the Sodium-Driven Chloride Bicarbonate Exchanger NCBE Impairs Visual Function in the Mouse Retina

    Get PDF
    Regulation of ion and pH homeostasis is essential for normal neuronal function. The sodium-driven chloride bicarbonate exchanger NCBE (Slc4a10), a member of the SLC4 family of bicarbonate transporters, uses the transmembrane gradient of sodium to drive cellular net uptake of bicarbonate and to extrude chloride, thereby modulating both intracellular pH (pHi) and chloride concentration ([Cl-]i) in neurons. Here we show that NCBE is strongly expressed in the retina. As GABAA receptors conduct both chloride and bicarbonate, we hypothesized that NCBE may be relevant for GABAergic transmission in the retina. Importantly, we found a differential expression of NCBE in bipolar cells: whereas NCBE was expressed on ON and OFF bipolar cell axon terminals, it only localized to dendrites of OFF bipolar cells. On these compartments, NCBE colocalized with the main neuronal chloride extruder KCC2, which renders GABA hyperpolarizing. NCBE was also expressed in starburst amacrine cells, but was absent from neurons known to depolarize in response to GABA, like horizontal cells. Mice lacking NCBE showed decreased visual acuity and contrast sensitivity in behavioral experiments and smaller b-wave amplitudes and longer latencies in electroretinograms. Ganglion cells from NCBE-deficient mice also showed altered temporal response properties. In summary, our data suggest that NCBE may serve to maintain intracellular chloride and bicarbonate concentration in retinal neurons. Consequently, lack of NCBE in the retina may result in changes in pHi regulation and chloride-dependent inhibition, leading to altered signal transmission and impaired visual function

    Stress Concentration in a Stretched Cylindrical Shell With Two Equal Circular Holes 1

    Get PDF
    In this investigation, the stress distribution due to uniaxial tension of an infinitely lon

    The Amplitude of Non-Equilibrium Quantum Interference in Metallic Mesoscopic Systems

    Full text link
    We study the influence of a DC bias voltage V on quantum interference corrections to the measured differential conductance in metallic mesoscopic wires and rings. The amplitude of both universal conductance fluctuations (UCF) and Aharonov-Bohm effect (ABE) is enhanced several times for voltages larger than the Thouless energy. The enhancement persists even in the presence of inelastic electron-electron scattering up to V ~ 1 mV. For larger voltages electron-phonon collisions lead to the amplitude decaying as a power law for the UCF and exponentially for the ABE. We obtain good agreement of the experimental data with a model which takes into account the decrease of the electron phase-coherence length due to electron-electron and electron-phonon scattering.Comment: New title, refined analysis. 7 pages, 3 figures, to be published in Europhysics Letter

    Spectral and Wavefront Error Performance of WFIRST-AFTA Bandpass Filter Coating Prototypes

    Get PDF
    The Cycle 5 design baseline for the Wide-Field Infrared Survey Telescope Astrophysics Focused Telescope Assets (WFIRST/AFTA) instrument includes a single wide-field channel (WFC) instrument for both imaging and slit-less spectroscopy. The only routinely moving part during scientific observations for this wide-field channel is the element wheel (EW) assembly. This filter-wheel assembly will have 8 positions that will be populated with 6 bandpass filters, a blank position, and a Grism that will consist of a three-element assembly to disperse the full field with an undeviated central wavelength for galaxy redshift surveys. All filter elements in the EW assembly will be made out of fused silica substrates (110 mm diameter) that will have the appropriate bandpass coatings according to the filter designations (Z087, Y106, J129, H158, F184, W149 and Grism). This paper presents and discusses the performance (including spectral transmission and reflected/transmitted wavefront error measurements) of a subset of bandpass filter coating prototypes that are based on the WFC instrument filter compliment. The bandpass coating prototypes that are tested in this effort correspond to the Z087, W149, and Grism filter elements. These filter coatings have been procured from three different vendors to assess the most challenging aspects in terms of the in-band throughput, out of band rejection (including the cut-on and cutoff slopes), and the impact the wavefront error distortions of these filter coatings will have on the imaging performance of the wide-field channel in the WFIRST/AFTA observatory
    • …
    corecore