235 research outputs found

    Distribution of emphysema in heavy smokers: Impact on pulmonary function

    Get PDF
    SummaryPurposeTo investigate impact of distribution of computed tomography (CT) emphysema on severity of airflow limitation and gas exchange impairment in current and former heavy smokers participating in a lung cancer screening trial.Materials and MethodsIn total 875 current and former heavy smokers underwent baseline low-dose CT (30mAs) in our center and spirometry and diffusion capacity testing on the same day as part of the Dutch–Belgian Lung Cancer Screening Trial (NELSON). Emphysema was quantified for 872 subjects as the number of voxels with an apparent lowered X-ray attenuation coefficient. Voxels attenuated <−950HU were categorized as representing severe emphysema (ES950), while voxels attenuated between −910HU and −950HU represented moderate emphysema (ES910). Impact of distribution on severity of pulmonary function impairment was investigated with logistic regression, adjusted for total amount of emphysema.ResultsFor ES910 an apical distribution was associated with more airflow obstruction and gas exchange impairment than a basal distribution (both p<0.01). The FEV1/FVC ratio was 1.6% (95% CI 0.42% to 2.8%) lower for apical predominance than for basal predominance, for Tlco/VA the difference was 0.12% (95% CI 0.076–0.15%). Distribution of ES950 had no impact on FEV1/FVC ratio, while an apical distribution was associated with a 0.076% (95% CI 0.038–0.11%) lower Tlco/VA (p<0.001).ConclusionIn a heavy smoking population, an apical distribution is associated with more severe gas exchange impairment than a basal distribution; for moderate emphysema it is also associated with a lower FEV1/FVC ratio. However, differences are small, and likely clinically irrelevant

    Molecular Genetics of T Cell Development

    Get PDF
    T cell development is guided by a complex set of transcription factors that act recursively, in different combinations, at each of the developmental choice points from T-lineage specification to peripheral T cell specialization. This review describes the modes of action of the major T-lineage-defining transcription factors and the signal pathways that activate them during intrathymic differentiation from pluripotent precursors. Roles of Notch and its effector RBPSuh (CSL), GATA-3, E2A/HEB and Id proteins, c-Myb, TCF-1, and members of the Runx, Ets, and Ikaros families are critical. Less known transcription factors that are newly recognized as being required for T cell development at particular checkpoints are also described. The transcriptional regulation of T cell development is contrasted with that of B cell development, in terms of their different degrees of overlap with the stem-cell program and the different roles of key transcription factors in gene regulatory networks leading to lineage commitment

    Исследование характеристик щелевого теплообменника с развитой поверхностью теплообмена

    Get PDF
    Предложена конструкция водяного многоканального щелевого теплообменника, позволяющего отводить мощность до 750 Вт при температуре имитатора теплового потока 60°С, а также пути повышения технологичности изготовления теплообменника

    Radiation dose reduction in pediatric great vessel stent computed tomography using iterative reconstruction: A phantom study

    Get PDF
    Background To study dose reduction using iterative reconstruction (IR) for pediatric great vessel stent computed tomography (CT). Methods Five different great vessel stents were separately placed in a gel-containing plastic holder within an anthropomorphic chest phantom. The stent lumen was filled with diluted contrast gel. CT acquisitions were performed at routine dose, 52% and 81% reduced dose and reconstructed with filtered back projection (FBP) and IR. Objective image quality in terms of noise, signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) as well as subjective image quality were evaluated. Results Noise, SNR and CNR were improved with IR at routine and 52% reduced dose, compared to FBP at routine dose. The lowest dose level resulted in decreased objective image quality with both FBP and IR. Subjective image quality was excellent at all dose levels. Conclusion IR resulted in improved objective image quality at routine dose and 52% reduced dose, while objective image quality deteriorated at 81% reduced dose. Subjective image quality was not affected by dose reduction

    Imaging of pediatric great vessel stents: Computed tomography or magnetic resonance imaging?

    Get PDF
    __Background:__ Complications might occur after great vessel stent implantation in children. Therefore follow- up using imaging is warranted. __Purpose:__ To determine the optimal imaging modality for the assessment of stents used to treat great vessel obstructions in children. __Material and methods:__ Five different large vessel stents were evaluated in an in-vitro setting. All stents were expanded to the maximal vendor recommended diameter (20mm; n = 4 or 10mm; n = 1), placed in an anthropomorphic chest phantom and imaged with a 256-slice CT-scanner. MRI images were acquired at 1.5T using a multi-slice T2-weighted turbo spin echo, an RFspoiled three-dimensional T1-weighted Fast Field Echo and a balanced turbo field echo 3D seq

    Magnetic Barriers and their q95 dependence at DIII-D

    Full text link
    It is well known that externally generated resonant magnetic perturbations (RMPs) can form islands in the plasma edge. In turn, large overlapping islands generate stochastic fields, which are believed to play a role in the avoidance and suppression of edge localized modes (ELMs) at DIII-D. However, large coalescing islands can also generate, in the middle of these stochastic regions, KAM surfaces effectively acting as "barriers" against field-line dispersion and, indirectly, particle diffusion. It was predicted in [H. Ali and A. Punjabi, Plasma Phys. Control. Fusion 49 (2007), 1565-1582] that such magnetic barriers can form in piecewise analytic DIII-D plasma equilibria. In the present work, the formation of magnetic barriers at DIII-D is corroborated by field-line tracing calculations using experimentally constrained EFIT [L. Lao, et al., Nucl. Fusion 25, 1611 (1985)] DIII-D equilibria perturbed to include the vacuum field from the internal coils utilized in the experiments. According to these calculations, the occurrence and location of magnetic barriers depends on the edge safety factor q95. It was thus suggested that magnetic barriers might contribute to narrowing the edge stochastic layer and play an indirect role in the RMPs failing to control ELMs for certain values of q95. The analysis of DIII-D discharges where q95 was varied, however, does not show anti-correlation between barrier formation and ELM suppression

    Organogenesis relies on SoxC transcription factors for the survival of neural and mesenchymal progenitors

    Get PDF
    During organogenesis, neural and mesenchymal progenitor cells give rise to many cell lineages, but their molecular requirements for self-renewal and lineage decisions are incompletely understood. In this study, we show that their survival critically relies on the redundantly acting SoxC transcription factors Sox4, Sox11 and Sox12. The more SoxC alleles that are deleted in mouse embryos, the more severe and widespread organ hypoplasia is. SoxC triple-null embryos die at midgestation unturned and tiny, with normal patterning and lineage specification, but with massively dying neural and mesenchymal progenitor cells. Specific inactivation of SoxC genes in neural and mesenchymal cells leads to selective apoptosis of these cells, suggesting SoxC cell-autonomous roles. Tead2 functionally interacts with SoxC genes in embryonic development, and is a direct target of SoxC proteins. SoxC genes therefore ensure neural and mesenchymal progenitor cell survival, and function in part by activating this transcriptional mediator of the Hippo signalling pathway

    The relationship between lung function impairment and quantitative computed tomography in chronic obstructive pulmonary disease

    Get PDF
    Contains fulltext : 109919.pdf (Publisher’s version ) (Open Access)OBJECTIVES: To determine the relationship between lung function impairment and quantitative computed tomography (CT) measurements of air trapping and emphysema in a population of current and former heavy smokers with and without airflow limitation. METHODS: In 248 subjects (50 normal smokers; 50 mild obstruction; 50 moderate obstruction; 50 severe obstruction; 48 very severe obstruction) CT emphysema and CT air trapping were quantified on paired inspiratory and end-expiratory CT examinations using several available quantification methods. CT measurements were related to lung function (FEV(1), FEV(1)/FVC, RV/TLC, Kco) by univariate and multivariate linear regression analysis. RESULTS: Quantitative CT measurements of emphysema and air trapping were strongly correlated to airflow limitation (univariate r-squared up to 0.72, p < 0.001). In multivariate analysis, the combination of CT emphysema and CT air trapping explained 68-83% of the variability in airflow limitation in subjects covering the total range of airflow limitation (p < 0.001). CONCLUSIONS: The combination of quantitative CT air trapping and emphysema measurements is strongly associated with lung function impairment in current and former heavy smokers with a wide range of airflow limitation.01 januari 201

    Radiation dose reduction for CT assessment of urolithiasis using iterative reconstruction: A prospective intra-individual study

    Get PDF
    Objective: To assess the performance of hybrid (HIR) and model-based iterative reconstruction (MIR) in patients with urolithiasis at reduced-dose computed tomography (CT). Methods: Twenty patients scheduled for unenhanced abdominal CT for follow-up of urolithiasis were prospectively included. Routine dose acquisition was followed by three low-dose acquisitions at 40%, 60% and 80% reduced doses. All images were reconstructed with filtered back projection (FBP), HIR and MIR. Urolithiasis detection rates, gall bladder, appendix and rectosigmoid evaluation and overall subjective image quality were evaluated by two observers. Results: 74 stones were present in 17 patients. Half the stones were not detected on FBP at the lowest dose level, but this improved with MIR to a sensitivity of 100%. HIR resulted in a slight decrease in sensitivity at the lowest dose to 72%, but outperformed FBP. Evaluation of other structures with HIR at 40% and with MIR at 60% dose reductions was comparable to FBP at routine dose, but 80% dose reduction resulted in non-evaluable images. Conclusions: CT radiation dose for urolithiasis detection can be safely reduced by 40 (HIR)–60 (MIR) % without affecting assessment of urolithiasis, possible extra-urinary tract pathology or overall image quality. Key Points: • Iterative reconstruction can be used to substantially lower the radiation dose. • This allows for radiation reduction without affecting sensitivity of stone detection. • Possible extra-urinary tract pathology evaluation is feasible at 40–60% reduced dose

    Surface-Anchored Monomeric Agonist pMHCs Alone Trigger TCR with High Sensitivity

    Get PDF
    At the interface between T cell and antigen-presenting cell (APC), peptide antigen presented by MHC (pMHC) binds to the T cell receptor (TCR) and initiates signaling. The mechanism of TCR signal initiation, or triggering, remains unclear. An interesting aspect of this puzzle is that although soluble agonist pMHCs cannot trigger TCR even at high concentrations, the same ligands trigger TCR very efficiently on the surface of APCs. Here, using lipid bilayers or plastic-based artificial APCs with defined components, we identify the critical APC-associated factors that confer agonist pMHCs with such potency. We found that CD4+ T cells are triggered by very low numbers of monomeric agonist pMHCs anchored on fluid lipid bilayers or fixed plastic surfaces, in the absence of any other APC surface molecules. Importantly, on bilayers, plastic surfaces, or real APCs, endogenous pMHCs did not enhance TCR triggering. TCR triggering, however, critically depended upon the adhesiveness of the surface and an intact T cell actin cytoskeleton. Based on these observations, we propose the receptor deformation model of TCR triggering to explain the remarkable sensitivity and specificity of TCR triggering
    corecore