824 research outputs found

    Characterisation and representation of non-dissipative electromagnetic medium with a double light cone

    Full text link
    We study Maxwell's equations on a 4-manifold N with a medium that is non-dissipative and has a linear and pointwise response. In this setting, the medium can be represented by a suitable (2,2)-tensor on the 4-manifold N. Moreover, in each cotangent space on N, the medium defines a Fresnel surface. Essentially, the Fresnel surface is a tensorial analogue of the dispersion equation that describes the response of the medium for signals in the geometric optics limit. For example, in isotropic medium the Fresnel surface is at each point a Lorentz light cone. In a recent paper, I. Lindell, A. Favaro and L. Bergamin introduced a condition that constrains the polarisation for plane waves. In this paper we show (under suitable assumptions) that a slight strengthening of this condition gives a pointwise characterisation of all medium tensors for which the Fresnel surface is the union of two distinct Lorentz null cones. This is for example the behaviour of uniaxial medium like calcite. Moreover, using the representation formulas from Lindell et al. we obtain a closed form representation formula that pointwise parameterises all medium tensors for which the Fresnel surface is the union of two distinct Lorentz null cones. Both the characterisation and the representation formula are tensorial and do not depend on local coordinates

    Arc Magmas from Slab to Eruption: The Case of Kliuchevskoy Volcano

    Get PDF
    Arc magmas are generated by a number of mantle and crustal processes. Our multidisciplinary, long-term research is aimed at deciphering these processes for a single arc volcano, Kliuchevskoy volcano in Kamchatka. Some key results of the study follow: 1) Modeling of trace element and H2O contents in melt inclusions suggests that the primary magmas originate via hydrous flux-melting of the mantle wedge at temperatures close to the dry peridotite solidus. The role of decompression melting is minor or absent at Kliuchevskoy and other arc volcanoes built on relatively thick crust. 2) Geochemistry of high-Mg olivine suggests that primary Kliuchevskoy magmas have substantial contribution from olivine-free pyroxenite (up to 30 %), which could be formed by reaction of slab melts (or supercritical fluids) with mantle wedge peridotite. 3) Parental Kliuchevskoy melts start to crystallize as deep as the Moho boundary, and the erupted magmas reflect multistage and complex processes of crystallization, magma mixing and crustal assimilation. None of the Kliuchevskoy rocks analyzed thus far represent true primary melt compositions. 4) The Kliuchevskoy Holocene eruptive history is not steady-state in terms of eruption rate and geochemistry. There are two millenial cycles with major and trace element and OSr- Nd-Pb and U-series isotope compositions of the magmas changing gradually from more to less affected by crustal (?) assimilation. The onset of the cycles correlates with periods of enhanced volcanic activity in Kamchatka, suggesting that the extent of magma-crust interaction is inversely related to magma production rate and thus magma flux from the mantle

    Effects of ocean acidification and global warming on reef bioerosion—lessons from a clionaid sponge

    Get PDF
    Coral reefs are under threat, exerted by a number of interacting effects inherent to the present climate change, including ocean acidification and global warming. Bioerosion drives reef degradation by recycling carbonate skeletal material and is an important but understudied factor in this context. Twelve different combinations of pCO2 and temperature were applied to elucidate the consequences of ocean acidification and global warming on the physiological response and bioerosion rates of the zooxanthellate sponge Cliona orientalis—one of the most abundant and effective bioeroders on the Great Barrier Reef, Australia. Our results confirm a significant amplification of the sponges’ bioerosion capacity with increasing pCO2, which is expressed by more carbonate being chemically dissolved by etching. The health of the sponges and their photosymbionts was not affected by changes in pCO2, in contrast to temperature, which had significant negative impacts at higher levels. However, we could not conclusively explain the relationship between temperature and bioerosion rates, which were slightly reduced at both colder as well as warmer temperatures than ambient. The present findings on the effects of ocean acidification on chemical bioerosion, however, will have significant implications for predicting future reef carbonate budgets, as sponges often contribute the lion’s share of internal bioerosion on coral reefs

    Reallocation Effects of the Minimum Wage

    Get PDF
    We investigate the wage, employment and reallocation effects of the introduction of a nationwide minimum wage in Germany that affected 15% of all employees. Based on identification designs that exploit variation in exposure across individuals and local areas, we find that the minimum wage raised wages, but did not lower employment. It also led to the reallocation of low-wage workers from smaller to larger, from lower- to higher-paying, and from less- to more-productive establishments. This worker upgrading accounts for up to 17% of the wage increase induced by the minimum wage. Moreover, at the regional level, average establishment quality increased in more affected areas in the years following the introduction of the minimum wage

    Post-Collisional Transition from Subduction to Intraplate-type Magmatism in the Westernmost Mediterranean: Evidence for Continental-Edge Delamination of Subcontinental Lithosphere

    Get PDF
    Post-collisional magmatism in the southern Iberian and northwestern African continental margins contains important clues for the understanding of a possible causal connection between movements in the Earth's upper mantle, the uplift of continental lithosphere and the origin of circum-Mediterranean igneous activity. Systematic geochemical and geochronological studies (major and trace element, Sr–Nd–Pb-isotope analysis and laser 40Ar/39Ar-age dating) on igneous rocks provide constraints for understanding the post-collisional history of the southern Iberian and northwestern African continental margins. Two groups of magmatic rocks can be distinguished: (1) an Upper Miocene to Lower Pliocene (8·2–4·8 Ma), Si–K-rich group including high-K (calc-alkaline) and shoshonitic series rocks; (2) an Upper Miocene to Pleistocene (6·3–0·65 Ma), Si-poor, Na-rich group including basanites and alkali basalts to hawaiites and tephrites. Mafic samples from the Si–K-rich group generally show geochemical affinities with volcanic rocks from active subduction zones (e.g. Izu–Bonin and Aeolian island arcs), whereas mafic samples from the Si-poor, Na-rich group are geochemically similar to lavas found in intraplate volcanic settings derived from sub-lithospheric mantle sources (e.g. Canary Islands). The transition from Si-rich (subduction-related) to Si-poor (intraplate-type) magmatism between 6·3 Ma (first alkali basalt) and 4·8 Ma (latest shoshonite) can be observed both on a regional scale and in individual volcanic systems. Si–K-rich and Si-poor igneous rocks from the continental margins of southern Iberia and northwestern Africa are, respectively, proposed to have been derived from metasomatized subcontinental lithosphere and sub-lithospheric mantle that was contaminated with plume material. A three-dimensional geodynamic model for the westernmost Mediterranean is presented in which subduction of oceanic lithosphere is inferred to have caused continental-edge delamination of subcontinental lithosphere associated with upwelling of plume-contaminated sub-lithospheric mantle and lithospheric uplift. This process may operate worldwide in areas where subduction-related and intraplate-type magmatism are spatially and temporally associated

    Coexisting large and small vessel disease in patients with ischemic stroke of undetermined cause

    Get PDF
    Background and Purpose: Large artery atherosclerosis (LAA) and small vessel disease (SVD) share common risk factors for stroke. We aimed at investigating the association of SVD with cerebral LAA as well as with atherosclerosis in patients with stroke likely to originate from aortic plaques. Methods: We investigated 71 consecutive patients (48 men, mean age 64.2 +/- 13 years) with ischemic stroke of undetermined cause according to the ASCO classification, who received ECG-triggered CT angiography for best available atherosclerotic plaque detection in the aorta. Results: Aortic atherosclerotic plaques were detected in 54 patients (76.1%). The presence of SVD significantly correlated with the presence of aortic plaques (p < 0.001), as well as LAA (p < 0.001) and risk factors such as arterial hypertension (p = 0.032) and diabetes mellitus (p = 0.017). Conclusions: Aortic plaques are common in patients with stroke of undetermined cause. If so, SVD and LAA are often coexisting, which demonstrates the close link of macro- and microangiopathy, at least in cases of severe risk factors of atherosclerosis. Copyright © 2012 S. Karger AG, Base

    Neighbours of Einstein's Equations: Connections and Curvatures

    Full text link
    Once the action for Einstein's equations is rewritten as a functional of an SO(3,C) connection and a conformal factor of the metric, it admits a family of ``neighbours'' having the same number of degrees of freedom and a precisely defined metric tensor. This paper analyzes the relation between the Riemann tensor of that metric and the curvature tensor of the SO(3) connection. The relation is in general very complicated. The Einstein case is distinguished by the fact that two natural SO(3) metrics on the GL(3) fibers coincide. In the general case the theory is bimetric on the fibers.Comment: 16 pages, LaTe

    Sub-arc mantle enrichment in the Sunda rear-arc inferred from HFSE systematics in high-K lavas from Java

    Get PDF
    Many terrestrial silicate reservoirs display a characteristic depletion in Nb, which has been explained in some studies by the presence of reservoirs on Earth with superchondritic Nb/Ta. As one classical example, K-rich lavas from the Sunda rear-arc, Indonesia, have been invoked to tap such a high-Nb/Ta reservoir. To elucidate the petrogenetic processes active beneath the Java rear-arc and the causes for the superchondritic Nb/Ta in some of these lavas, we studied samples from the somewhat enigmatic Javanese rear-arc volcano Muria, which allow conclusions regarding the across-arc variations in volcanic output, source mineralogy and subduction components. We additionally report some data for an along-arc sequence of lavas from the Indonesian part of the Sunda arc, extending from Krakatoa in the west to the islands of Bali and Lombok in the east. We present major and trace element concentrations, Sr–Nd–Hf–Pb isotope compositions, and high-field-strength element (HFSE: Nb, Ta, Zr, Hf, W) concentrations obtained via isotope dilution and MC-ICP-MS analyses. The geochemical data are complemented by melting models covering different source compositions with slab melts formed at variable P–T conditions. The radiogenic isotope compositions of the frontal arc lavas in combination with their trace element systematics confirm previously established regional variations of subduction components along the arc. Melting models show a clear contribution of a sediment-derived component to the HFSE budget of the frontal arc lavas, particularly affecting Zr–Hf and W. In contrast, the K-rich rear-arc lavas tap more hybrid and enriched mantle sources. The HFSE budget of the rear-arc lavas is in particular characterized by superchondritic Nb/Ta (up to 25) that are attributed to deep melting involving overprint by slab melts formed from an enriched garnet–rutile-bearing eclogitic residue. Sub-arc slab melting was potentially triggered along a slab tear beneath the Sunda arc, which is the result of the forced subduction of an oceanic basement relief ~ 8 Myr ago as confirmed by geophysical studies. The purported age of the slab tear coincides with a paucity in arc volcanism, widespread thrusting of the Javanese basement crust as well as the short-lived nature of the K-rich rear-arc volcanism at that time. © 2021, The Author(s)
    • …
    corecore