356 research outputs found

    A Photoacoustic Spectrometer For Trace Gas Detection

    Get PDF
    A high-resolution external laser photoacoustic spectrometer has been developed for trace gas detection with absorption transitions in coincidence with CO 2 laser emission lines (9,2-10,9 μm: 920-1086 cm -1). The CO 2 laser operates in 90 CW lines with power of up to 15 W. A PC-controlled step motor can tune the laser lines. The resonance frequency of first longitudinal mode of the photoacoustic cell is at 1600 Hz. The cell Q-factor and cell constant are measured close to 50 and 28 mVcmW -1 respectively. The spectrometer has been tested in preliminary studies to analyze the absorption transitions of ozone (O 3). The ethylene (C 2H 4 from papaya fruit is also investigated using N 2 as carrier gas at a constant flow rate. © EDP Sciences.125885888Sigrist, M.W., (1994) Air Monitoring by Spectroscopic Techniques, pp. 163-238. , John Wiley & Sons, Inc, New YorkBijnen, F.G.C., Reuss, J., Harren, F.J.M., (1996) Rev. Sci. Instrum., 67, pp. 2914-2923Nägele, M., Sigrist, M.W., (2000) Appl. Phys. B, 70, pp. 895-901Webber, M.E., Pushkarsky, M.B., Patel, C.K.N., Ultra-sensitive gas detection using diode laser and resonant photoacoustic spectroscopy (2002) SPIE's International Symposium on Optical Science and Technology, 4817, pp. 111-122. , Seattle, U.S.A., Alan Fried Editor Proceedings of SPIEThöny, A., Sigrist, M.W., (1995) Infrared Phys. Technol., 36, pp. 585-615Da Silva, M.G., Lima, J.A.P., Sthel, M.S., Marin, E., Gatts, C.E.N., Cardoso, S.L., Campostrini, E., Vargas, H., (2001) Analytical Sciences, 17, pp. s534-s53

    Ocular effects caused by viral infections and corresponding vaccines: An overview of varicella zoster virus, measles virus, influenza viruses, hepatitis B viruses, and SARS-CoV-2

    Get PDF
    Many viral infections can affect vision and the visual system. Vaccination to prevent diseases is commonplace today, acting by stimulating an immune response without developing the pathology. It involves the production of persisting antibodies against the pathogen and the activation of T cells. Certain diseases have already been eradicated by rigorous vaccination campaigns, while others are hoped to be eliminated soon. Vaccines currently available on the market are largely safe, even if they can rarely cause some adverse effects, such as ocular complications. Analyzing existing literature, we aimed to compare the pathological effects on the eye due to the most common viral infections [in particular varicella zoster virus (VZV), measles virus, influenza viruses, hepatitis B virus, and SARS-CoV-2] with the possible ocular adverse effects of their relative vaccines, in order to establish a risk-benefit relationship from an ophthalmological point of view

    Ground State Energy of the One-Component Charged Bose Gas

    Full text link
    The model considered here is the `jellium' model in which there is a uniform, fixed background with charge density eρ-e\rho in a large volume VV and in which N=ρVN=\rho V particles of electric charge +e+e and mass mm move --- the whole system being neutral. In 1961 Foldy used Bogolubov's 1947 method to investigate the ground state energy of this system for bosonic particles in the large ρ\rho limit. He found that the energy per particle is 0.402rs3/4me4/2-0.402 r_s^{-3/4} {me^4}/{\hbar^2} in this limit, where rs=(3/4πρ)1/3e2m/2r_s=(3/4\pi \rho)^{1/3}e^2m/\hbar^2. Here we prove that this formula is correct, thereby validating, for the first time, at least one aspect of Bogolubov's pairing theory of the Bose gasComment: 38 pages latex. Typos corrected.Lemma 6.2 change

    Mesenchymal stem cell-derived extracellular vesicles protect human corneal endothelial cells from endoplasmic reticulum stress-mediated apoptosis

    Get PDF
    Corneal endothelial dystrophy is a relevant cause of vision loss and corneal transplantation worldwide. In the present study, we analyzed the effect of mesenchymal stem cell (MSC)-derived extracellular vesicles (MSC-EVs) in an in vitro model of corneal dystrophy, characterized by endoplasmic reticulum stress. The effects of MSC-EVs were compared with those of serum-derived EVs, reported to display a pro-angiogenic activity. MSC-EVs were able to induce a significant down-regulation of the large majority of endoplasmic reticulum stress-related genes in human corneal endothelial cells after exposure to serum deprivation and tunicamycin. In parallel, they upregulated the Akt pathway and limited caspase-3 activation and apoptosis. At variance, the effect of the serum EVs was mainly limited to Akt phosphorylation, with minimal or absent effects on endoplasmic reticulum stress modulation and apoptosis prevention. The effects of MSC-EVs were correlated to the transfer of numerous endoplasmic reticulum (ER)-stress targeting miRNAs to corneal endothelial cells. These data suggest a potential therapeutic effect of MSC-EVs for corneal endothelial endoplasmic reticulum stress, a major player in corneal endothelial dystrophy

    The Pure Rotational Spectrum And Hyperfine Structure Of Cf Studied By Laser Magnetic Resonance

    Get PDF
    Laser magnetic resonance spectra have been measured for four rotational transitions and one spin-changing transition in the 2Π ground state of CF, generated in an intracavity methane-fluorine flame. From a detailed analysis of the Zeeman hyperfine structure of the J = 9/2→11/2 transition in the Ω = 3/2 spin component the hyperfine constants h, b, and d as well as B0 and q0 have been determined. Using these fitted parameters in conjunction with ab initio results, the values of 〈l/r 3〉, 〈(3 cos2θ - l)/r3〉, |φ2(0)|, and 〈(sin2θ)/r3〉, averaged over the unpaired electron distribution, have been determined. Comparison of these integrals with those of the fluorine atom indicates that the unpaired electron has approximately 18% F character, implying a substantial degree of double bonding. © 1982 American Institute of Physics.771586

    gam genomic assemblies merger

    Get PDF
    Motivations. In the last 3 years more than 20 assemblers have been proposed to tackle the hard task of assembling. Recent evaluation efforts (Assemblathon 1 and GAGE) demonstrated that none of these tools clearly outperforms the others. However, results clearly show that some assemblers performs better than others on specific regions and statistics while poorly performing on other regions and evaluation measures. With this picture in mind we developed GAM (Genomic Assemblies Merger) whose primary goal is to merge two or more assemblies in order to obtain a more contiguous one. Moreover, as a by-product of the merging step, GAM is able to correct mis-assemblies. GAM does not need global alignment between contigs, making it unique among others Assembly Reconciliation tools. In this way a computationally expensive alignment is avoided, and paralog sequences (likely to create false connection among contigs) do not represent a problem. GAM procedure is based only on the information coming from reads used in the assembling phases, and it can be used even on assemblies obtained with different datasets. Methods. Let us concentrate on the the merging of two assemblies, dubbed M and S. As a preprocessing step, that is an almost mandatory analysis, reads (or a subset of them) used in the assembling phase are aligned against M and S using a SAM-compatible aligner (e.g., BWA, rNA). GAM takes as input M, S and the two SAM files produced in the preprocessing step. The main idea is to identify fragments belonging to M and S having high similarity. For this purpose, GAM identifies regions, named blocks, belonging to M and S that share an high enough amount of reads (i.e. regions sharing the same aligned reads). After all blocks are identified the Assembly Graph (AG) is built: each node corresponds to a block and a directed edge connects block A to block B if the first precedes the second in either M or S (see Fig.1). Once AG is available, the merging phase can start. As a first step GAM identifies genomic regions in which assemblies contradict each other (loops, bifurcations, etc.). These areas represent potential inconsistencies between the two sequences. We chose to be as much conservative as possible electing (for example) M to be the Master assembly: all its contigs are supposed to be correct and cannot be contradicted. S becomes the Slave and everywhere an inconsistency is found, M is preferred to S. After the identification and the resolution of problematic regions, GAM visits the simplified graph, merges contigs accordingly to blocks and edges in AG (each merging phase is performed using a Smith-Waterman algorithm variant) and finally outputs the new improved assembly. GAM is not only limited to contigs, it can also work with scaffolds, filling the N's inserted by an assembler and not by the other. Results. GAM has been tested on several real datasets, in particular on Olea's chloroplast (241X Illumina paired reads and 21X 454 paired reads), Populus trichocarpa (82X Illumina paired reads), boa constrictor (40X Illumina paired reads). Illumina reads have average length of 100 bp and insert size of 500 bp. All tests have been performed on a computer equipped with 8 cores and 32GB RAM. ABySS and CLC were selected as assemblers. Results are summarized in Fig. 1. Olea's chloroplast has been used as a proof of concept experiment. The presence of a reference sequence allowed GAM's output validation (using dnadiff). Two assemblies were obtained with CLC using Illumina and 454 data. GAM was used to merge them. Figure 1 shows how GAM assembly is not only more contiguous but also more correct: while Master (CLC-Illumina) and Slave (CLC-454) have 58 and 39 suspicious regions respectively, GAM has only 14 of those. On Populus trichocarpa and Boa constrictor, CLC assemblies were used as master due to their better contiguity. In both cases assemblies returned by GAM were more contiguous (see Fig. 1)

    Calcium magneto-optical trap loaded from a decelerated atomic beam

    Get PDF
    FAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOCAPES - COORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIORCNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICOWe describe a new system for laser cooling and trapping of neutral Calcium atoms employing the ¹S0 -¹ P1 resonant transition at 423 nm. An on-axis magneto-optical trap (MOT) is loaded from a Zeeman decelerated atomic beam. When a single laser is used, in order to avoid perturbation of the trap by the deceleration laser beam, this one has been tightly focused near the MOT center, with a waist size much smaller than the atomic cloud. In order to test the efficiency of this novel technique, we have then employed a second, independent decelerating laser, with a profile mode matched to the atomic beam. For an oven temperature of 580±C this system can load 1.2 (2) x 10(7) atoms in 16 (1) ms. By the spatial extension of the atomic cloud the one dimension rms velocity was estimated to be 136 (12) cm/s, corresponding to a temperature of 9 (2) mK. The variation of the number of trapped atoms as a function of laser detuning and intensity, trap magnetic field gradient and oven temperature is analyzed. Spatial structures of the trapped atoms, like stable rings created by vortex forces, have been observed. This is the first time that these structures, already observed in alkali-metal elements, are reported in MOTs of alkaline-earth elements.We describe a new system for laser cooling and trapping of neutral Calcium atoms employing the ¹S0 -¹ P1 resonant transition at 423 nm. An on-axis magneto-optical trap (MOT) is loaded from a Zeeman decelerated atomic beam. When a single laser is used, in order to avoid perturbation of the trap by the deceleration laser beam, this one has been tightly focused near the MOT center, with a waist size much smaller than the atomic cloud. In order to test the efficiency of this novel technique, we have then employed a second, independent decelerating laser, with a profile mode matched to the atomic beam. For an oven temperature of 580±C this system can load 1.2 (2) x 10(7) atoms in 16 (1) ms. By the spatial extension of the atomic cloud the one dimension rms velocity was estimated to be 136 (12) cm/s, corresponding to a temperature of 9 (2) mK. The variation of the number of trapped atoms as a function of laser detuning and intensity, trap magnetic field gradient and oven temperature is analyzed. Spatial structures of the trapped atoms, like stable rings created by vortex forces, have been observed. This is the first time that these structures, already observed in alkali-metal elements, are reported in MOTs of alkaline-earth elements.We describe a new system for laser cooling and trapping of neutral Calcium atoms employing the ¹S0 -¹ P1 resonant transition at 423 nm. An on-axis magneto-optical trap (MOT) is loaded from a Zeeman decelerated atomic beam. When a single laser is used, in order to avoid perturbation of the trap by the deceleration laser beam, this one has been tightly focused near the MOT center, with a waist size much smaller than the atomic cloud. In order to test the efficiency of this novel technique, we have then employed a second, independent decelerating laser, with a profile mode matched to the atomic beam. For an oven temperature of 580±C this system can load 1.2 (2) x 10(7) atoms in 16 (1) ms. By the spatial extension of the atomic cloud the one dimension rms velocity was estimated to be 136 (12) cm/s, corresponding to a temperature of 9 (2) mK. The variation of the number of trapped atoms as a function of laser detuning and intensity, trap magnetic field gradient and oven temperature is analyzed. Spatial structures of the trapped atoms, like stable rings created by vortex forces, have been observed. This is the first time that these structures, already observed in alkali-metal elements, are reported in MOTs of alkaline-earth elements.332355362FAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOCAPES - COORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIORCNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICOFAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOCAPES - COORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIORCNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICOSem informaçãoSem informaçãoSem informaçãoWe would like to acknowledge the glass shop of the UNICAMP Physics Institute for the very well done work in the construction of the atomic beam and MOT glass chamber. We also would like to thank the machine shop and J.B.Rodrigues for the mechanical parts. This work was supported by FAPESP, CAPES and CNPq and FAEPUNICAMP, Brazilian government agencies. Support for RLCF was through CAPES graduate research scholarship and for DAM and DRO through FAPESP graduate and undergraduate scholarships respectively

    Multiscale Particle-Continuum Simulations of Hypersonic Flow over a Planetary Probe

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/76410/1/AIAA-37319-396.pd

    The peculiar landscape of repetitive sequences in the olive (Olea europaea L.) genome

    Get PDF
    Analyzing genome structure in different species allows to gain an insight into the evolution of plant genome size. Olive (Olea europaea L.) has a medium-sized haploid genome of 1.4 Gb, whose structure is largely uncharacterized, despite the growing importance of this tree as oil crop. Next-generation sequencing technologies and different computational procedures have been used to study the composition of the olive genome and its repetitive fraction. A total of 2.03 and 2.3 genome equivalents of Illumina and 454 reads from genomic DNA, respectively, were assembled following different procedures, which produced more than 200,000 differently redundant contigs, with mean length higher than 1,000 nt. Mapping Illumina reads onto the assembled sequences was used to estimate their redundancy. The genome data set was subdivided into highly and medium redundant and nonredundant contigs. By combining identification and mapping of repeated sequences, it was established that tandem repeats represent a very large portion of the olive genome (∼31% of the whole genome), consisting of six main families of different length, two of which were first discovered in these experiments. The other large redundant class in the olive genome is represented by transposable elements (especially long terminal repeat-retrotransposons). On the whole, the results of our analyses show the peculiar landscape of the olive genome, related to the massive amplification of tandem repeats, more than that reported for any other sequenced plant genome

    Hybrid Particle-Continuum Simulations of Nonequilibrium Hypersonic Blunt-Body Flowfields

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/77319/1/AIAA-30216-565.pd
    corecore