202 research outputs found

    The Photonic Lantern

    Get PDF
    Photonic lanterns are made by adiabatically merging several single-mode cores into one multimode core. They provide low-loss interfaces between single-mode and multimode systems where the precise optical mapping between cores and individual modes is unimportant.Comment: 45 pages; article unchanged, accepted for publication in Advances in Optics and Photonic

    Measurements of few-mode fiber photonic lanterns in emulated atmospheric conditions for a low earth orbit space to ground optical communication receiver application

    Get PDF
    Photonic lanterns are being evaluated as a component of a scalable photon counting real-time optical ground receiver for space-to-ground photon-starved communication applications. The function of the lantern as a component of a receiver is to efficiently couple and deliver light from the atmospherically distorted focal spot formed behind a telescope to multiple small-core fiber-coupled single-element super-conducting nanowire detectors. This architecture solution is being compared to a multimode fiber coupled to a multi-element detector array. This paper presents a set of measurements that begins this comparison. This first set of measurements are a comparison of the throughput coupling loss at emulated atmospheric conditions for the case of a 60 cm diameter telescope receiving light from a low earth orbit satellite. The atmospheric conditions are numerically simulated at a range of turbulence levels using a beam propagation method and are physically emulated with a spatial light modulator. The results show that for the same number of output legs as the single-mode fiber lantern, the few-mode fiber lantern increases the power throughput up to 3.92 dB at the worst emulated atmospheric conditions tested of D/r(sub 0)=8.6. Furthermore, the coupling loss of the few-mode fiber lantern approaches the capability of a 30 micron graded index multimode fiber chosen for coupling to a 16 element detector array

    Spectroscopy of 3D-trapped particles inside a hollow-core microstructured optical fiber

    Full text link
    We report on the demonstration of three-dimensional optical trapping inside the core of a hollow-core microstructured optical fiber specifically designed and fabricated for this purpose. Optical trapping was achieved by means of an external tweezers beam incident transversely on the fiber and focused through the fiber cladding. Trapping was achieved for a range of particle sizes from 1 to 5 μm, and manipulation of the particles in three-dimensions through the entire cross-section of the fiber core was demonstrated. Spectroscopy was also performed on single fluorescent particles, with the fluorescence captured and guided in the fiber core. Video tracking methods allowed the optical traps to be characterized and photobleaching of single particles was also observed and characterized. © 2012 Optical Society of America

    Construcción de esculturas de hormigón con elementos procedentes del reciclado

    Get PDF
    This paper shows the conceptual development, project, constructive and execution processes of a group of seven sculptures designed to act as containers of other art works carried out by the Spanish artist Jesús Soler. This sculptural group bases its message on the sustainability and the recycling of materials. Its fundamental boundary conditions are the capacity to be mounted and dismounted without any anchorage to the soil, durability and protection of the art work in front of meteorological agents. The sculptural group transmits by itself an environmental message. This paper describes the geometry and proportions, based on the “Le Corbusier Modulor” and the golden section, as well as all the constructive techniques applied for the correct design of each sculpture: formwork systems, concrete with recycled arid, corten steel frames, anchorages, etc. Finally the first assembly process of this itinerant sculptural work is described; it is mounted in the Parque del Retiro in the city of Madrid (Spain).Este trabajo recoge el desarrollo conceptual, de proyecto, construcción y de ejecución de un conjunto de siete esculturas disenadas para actuar como contenedores de otras obras de arte (17 cuadros) realizadas por el artista Jesús Soler. Este conjunto escultórico basa su mensaje en la sostenibidad y el reciclaje. Presenta, como condiciones de contorno fundamentales, la capacidad de ser montado y desmontado sin necesidad de anclar al terreno, durabilidad y protección de las obras frente a agentes meteorológicos y todo ello transmitiendo por sí mismas un mensaje medioambiental. Se describe en el documento la geometría y proporciones basadas en el “Modulor” de Le Corbusier y, por consiguiente, en la sección áurea, así como todas las técnicas constructivas aplicadas para el correcto diseno de cada obra: sistemas de encofrado, hormigones con áridos reciclados, marcos de acero corten, anclajes, etc. Finalmente se describe el primer proceso de montaje de esta obra itinerante, en el Parque del Retiro de Madrid

    El género Lysaphidus (Hymenoptera: Braconidae) en la Península Ibérica

    Get PDF
    The genus Lysaphidus Smith, 1944 (Hymenoptera, Braconidae, Aphidiinae) is recorded for the first time from the Iberian Peninsula represented by two species: L. arvensis Stary, 1960, first record for the Iberian Peninsula, and L. santolinae n. sp., both of them parasitoids of Coloradoa Wilson,1910 genus (Homoptera, Aphididae). The mummies were collected on Santolina chamaecyparissus L. and Santolina rosmarinifolia L. (Asteraceae).Se detecta la presencia del género Lysaphidus Smith, 1944 (Hymenoptera, Braconidae, Aphidiinae) en la Península Ibérica, representado por dos especies, L. arvensis Stary, 1960, nueva cita para la Peninsula Ibérica y L. santolinae n. sp., parasitoides ambos del género Coloradoa Wilson, 1910 (Homoptera, Aphididae), cuyas momias fueron recolectadas sobre Santolina chamaecyparissus L. y Santolina rosmarinifolia L. (Asteraceae)

    Single-mode Fiber and Few-Mode Fiber Photonic Lanterns Performance Evaluated for Use in a Scalable Real-Time Photon Counting Ground Receiver

    Get PDF
    Photonic lanterns provide an efficient way of coupling light from a single large-core fiber to multiple small-core fibers. This capability is of interest for space to ground communication applications. In these applications, the optical ground receivers require high-efficiency coupling from an atmospherically distorted focus spot to multiple fiber coupled single pixel super-conducting nanowire detectors. This paper will explore the use of photonic lanterns in a real-time ground receiver that is scalable and constructed with commercial parts. The number of small-core fibers that make a photonic lantern determines the number of spatial modes that they couple. For instance, lanterns made with n number of single-mode fibers can couple n number of spatial modes. Although the laser transmitted from a spacecraft originates as a Gaussian shape, the atmosphere distorts the beam profile by scattering energy into higher-order spatial modes. Therefore, if a ground receiver is sized for a target data rate with n number of detectors, the corresponding lantern made with single-mode fibers will couple n number of spatial modes. The energy of the transmitted beam scattered into spatial modes higher than n will be lost. This paper shows this loss may be reduced by making lanterns with few-mode fibers instead of single-mode fibers, increasing the number of spatial modes that can be coupled and therefore increasing the coupling efficiency to single pixel, single photon detectors. The free space to fiber coupling efficiency of these two types of photonic lanterns are compared over a range of the free-space coupling numerical apertures and mode field diameters. Results indicate the few mode fiber lantern has higher coupling efficiency for telescopes with longer focal lengths under higher turbulent conditions. Also presented is analysis of the jitter added to the system by the lanterns, showing the few-mode fiber photonic lantern adds more jitter than the single-mode fiber lantern, but less than a multimode fiber

    Suppression of the near-infrared OH night sky lines with fibre Bragg gratings - first results

    Get PDF
    The background noise between 1 and 1.8 microns in ground-based instruments is dominated by atmospheric emission from hydroxyl molecules. We have built and commissioned a new instrument, GNOSIS, which suppresses 103 OH doublets between 1.47 - 1.7 microns by a factor of ~1000 with a resolving power of ~10,000. We present the first results from the commissioning of GNOSIS using the IRIS2 spectrograph at the AAT. The combined throughput of the GNOSIS fore-optics, grating unit and relay optics is ~36 per cent, but this could be improved to ~46 per cent with a more optimal design. We measure strong suppression of the OH lines, confirming that OH suppression with fibre Bragg gratings will be a powerful technology for low resolution spectroscopy. The integrated OH suppressed background between 1.5 and 1.7 microns is reduced by a factor of 9 compared to a control spectrum using the same system without suppression. The potential of low resolution OH suppressed spectroscopy is illustrated with example observations. The GNOSIS background is dominated by detector dark current below 1.67 microns and by thermal emission above 1.67 microns. After subtracting these we detect an unidentified residual interline component of ~ 860 +/ 210 ph/s/m^2/micron/arcsec^2. This component is equally bright in the suppressed and control spectra. We have investigated the possible source of the interline component, but were unable to discriminate between a possible instrumental artifact and intrinsic atmospheric emission. Resolving the source of this emission is crucial for the design of fully optimised OH suppression spectrographs. The next generation OH suppression spectrograph will be focussed on resolving the source of the interline component, taking advantage of better optimisation for a FBG feed. We quantify the necessary improvements for an optimal OH suppressing fibre spectrograph design.Comment: Accepted for publication in MNRAS. 15 pages, 18 figure

    Measurements of Few-Mode Fiber Photonic Lanterns in Emulated Atmospheric Conditions for a Low Earth Orbit Space to Ground Optical Communication Receiver Application

    Get PDF
    Photonic lanterns are being evaluated as a component of a scalable photon counting real-time optical ground receiver for space-to-ground photon-starved communication applications. The function of the lantern as a component of a receiver is to efficiently couple and deliver light from the atmospherically distorted focal spot formed behind a telescope to multiple small-core fiber-coupled single-element super-conducting nanowire detectors. This architecture solution is being compared to a multimode fiber coupled to a multi-element detector array. This paper presents a set of measurements that begins this comparison. This first set of measurements are a comparison of the throughput coupling loss at emulated atmospheric conditions for the case of a 60 cm diameter telescope receiving light from a low earth orbit satellite. The atmospheric conditions are numerically simulated at a range of turbulence levels using a beam propagation method and are physically emulated with a spatial light modulator. The results show that for the same number of output legs as the single-mode fiber lantern, the few mode fiber lantern increases the power throughput up to 3.92 dB at the worst emulated atmospheric conditions tested of D/r0=8.6. Furthermore, the coupling loss of the few mode fiber lantern approaches the capability of a 30 micron graded index multimode fiber chosen for coupling to a 16 element detector array
    corecore