35,290 research outputs found

    Deriving Iodine-free spectra for high-resolution echelle spectrographs

    Full text link
    We describe a new method to derive clean, iodine-free spectra directly from observations acquired using high-resolution echelle spectrographs equipped with iodine cells. The main motivation to obtain iodine-free spectra is to use portions of the spectrum that are superimposed with the dense forest of iodine absorption lines, in order to retrieve lines that can be used to monitor the magnetic activity of the star, helping to validate candidate planets. In short, we provide a straight-forward methodology to clean the spectra by using the forward model used to derive radial velocities, the Line Spread Function information plus the stellar spectrum without iodine to reconstruct and subtract the iodine spectrum from the observations. We show our results using observations of the star τ\tau Ceti acquired with the PFS, HIRES and UCLES spectrographs, reaching an iodine-free spectrum correction at the ∼\sim1% RMS level. We additionally discuss the limitations and further applications of the method.Comment: 15 pages, 7 figures. Accepted for publication in A

    Neutrino Physics and Nuclear Axial Two-Body Interactions

    Full text link
    We consider the counter-term describing isoscalar axial two-body currents in the nucleon-nucleon interaction, L1A, in the effective field theory approach. We determine this quantity using the solar neutrino data. We investigate the variation of L1A when different sets of data are used.Comment: 8 pages with 4 figures. To be published in the Proceedings of the Conference "Blueprints For The Nucleus: From First Principles to Collective Motion" held at Feza Gursey Institute, Istanbul, Turkey; May 17 -22, 200

    Color Difference Makes a Difference: Four Planet Candidates around Ï„ Ceti

    Get PDF
    The removal of noise typically correlated in time and wavelength is one of the main challenges for using the radial-velocity (RV) method to detect Earth analogues. We analyze τ Ceti RV data and find robust evidence for wavelength-dependent noise. We find that this noise can be modeled by a combination of moving average models and the so-called "differential radial velocities." We apply this noise model to various RV data sets for τ Ceti, and find four periodic signals at 20.0, 49.3, 160, and 642 days, which we interpret as planets. We identify two new signals with orbital periods of 20.0 and 49.3 days while the other two previously suspected signals around 160 and 600 days are quantified to a higher precision. The 20.0 days candidate is independently detected in Keck data. All planets detected in this work have minimum masses less than 4M⊕ with the two long-period ones located around the inner and outer edges of the habitable zone, respectively. We find that the instrumental noise gives rise to a precision limit of the High Accuracy Radial Velocity Planet Searcher (HARPS) around 0.2 m s−1. We also find correlation between the HARPS data and the central moments of the spectral line profile at around 0.5 m s−1 level, although these central moments may contain both noise and signals. The signals detected in this work have semi-amplitudes as low as 0.3 m s−1, demonstrating the ability of the RV technique to detect relatively weak signals

    Gamma-ray Bursts, Classified Physically

    Full text link
    From Galactic binary sources, to extragalactic magnetized neutron stars, to long-duration GRBs without associated supernovae, the types of sources we now believe capable of producing bursts of gamma-rays continues to grow apace. With this emergent diversity comes the recognition that the traditional (and newly formulated) high-energy observables used for identifying sub-classes does not provide an adequate one-to-one mapping to progenitors. The popular classification of some > 100 sec duration GRBs as ``short bursts'' is not only an unpalatable retronym and syntactically oxymoronic but highlights the difficultly of using what was once a purely phenomenological classification to encode our understanding of the physics that gives rise to the events. Here we propose a physically based classification scheme designed to coexist with the phenomenological system already in place and argue for its utility and necessity.Comment: 6 pages, 3 figures. Slightly expanded version of solicited paper to be published in the Proceedings of ''Gamma Ray Bursts 2007,'' Santa Fe, New Mexico, November 5-9. Edited by E. E. Fenimore, M. Galassi, D. Palme

    A MERLIN Observation of PSR B1951+32 and its associated Plerion

    Full text link
    In an investigative 16 hour L band observation using the MERLIN radio interferometric array, we have resolved both the pulsar PSR B1951+32 and structure within the flat spectral radio continuum region, believed to be the synchrotron nebula associated with the interaction of the pulsar and its `host' supernova remnant CTB 80. The extended structure we see, significant at ∼\sim 4.5 σ\sigma, is of dimensions 2.5" ×\times 0.75", and suggests a sharp bow shaped arc of shocked emission, which is correlated with similar structure observed in lower resolution radio maps and X-ray images. Using this MERLIN data as a new astrometric reference for other multiwavelength data we can place the pulsar at one edge of the HST reported optical synchrotron knot, ruling out previous suggested optical counterparts, and allowing an elementary analysis of the optical synchrotron emission which appears to trail the pulsar. The latter is possibly a consequence of pulsar wind replenishment, and we suggest that the knot is a result of magnetohydrodynamic (MHD) instabilities. These being so, it suggests a dynamical nature to the optical knot, which will require high resolution optical observations to confirm.Comment: 12 pages, 2 figures. Accepted for publication in ApJ

    Sub-Saturn Planet Candidates to HD 16141 and HD 46375

    Get PDF
    Precision Doppler measurements from the Keck/HIRES spectrometer reveal periodic Keplerian velocity variations in the stars HD 16141 and HD 46375. HD 16141 (G5 IV) has a period of 75.8 d and a velocity amplitude of 11 m/s, yielding a companion having Msini = 0.22 Mjup and a semimajor axis, a = 0.35 AU. HD 46375 (K1 IV/V) has a period of 3.024 d and a velocity amplitude of 35 m/s, yielding a companion with Msini=0.25 Mjup, a semimajor axis of a = 0.041 AU, and an eccentricity of 0.04 (consistent with zero). These companions contribute to the rising planet mass function toward lower masses.Comment: 4 Figure

    High Reynolds number tests of a Boeing BAC I airfoil in the Langley 0.3-meter transonic cryogenic tunnel

    Get PDF
    A wind tunnel investigation of an advanced-technology airfoil was conducted in the Langley 0.3-Meter Transonic Cryogenic Tunnel (TCT). This investigation represents the first in a series of NASA/U.X. industry two dimensional airfoil studies to be completed in the Advanced Technology Airfoil Test program. Test temperature was varied from ambient to about 100 K at pressures ranging from about 1.2 to 6.0 atm. Mach number was varied from about 0.40 to 0.80. These variables provided a Reynolds number (based on airfoil chord) range from about .0000044 to .00005. This investigation was specifically designed to: (1) test a Boeing advanced airfoil from low to flight-equivalent Reynolds numbers; (2) provide the industry participant (Boeing) with experience in cryogenic wind-tunnel model design and testing techniques; and (3) demonstrate the suitability of the 0.3-m TCT as an airfoil test facility. All the objectives of the cooperative test were met. Data are included which demonstrate the effects of fixed transition, Mach number, and Reynolds number on the aerodynamic characteristics of the airfoil. Also included are remarks on the model design, the model structural integrity, and the overall test experience
    • …
    corecore