4,443 research outputs found
Diagnostic peritoneal lavage: a review of indications, technique, and interpretation
Diagnostic peritoneal lavage (DPL) is a highly accurate test for evaluating intraperitoneal hemorrhage or a ruptured hollow viscus, but is performed less frequently today due to the increased use of focused abdominal sonography for trauma (FAST) and helical computed tomography (CT). All three of these exams have advantages and disadvantages and thus each still play unique roles in the evaluation of abdominal trauma. Since DPL is performed less frequently today, a review of its indications, technique, and interpretation is pertinent
Interactions between KSHV ORF57 and the novel human TREX proteins, CHTOP and CIP29
The coupling of mRNA processing steps is essential for precise and efficient gene expression. The human transcription/export (hTREX) complex is a highly conserved multi-protein complex responsible for eukaryotic mRNA stability and nuclear export. We have previously shown that the Kaposi's sarcoma-associated ORF57 protein orchestrates the recruitment of the hTREX complex onto viral intronless mRNA forming a stable and export competent viral ribonucleoprotein particle (vRNP). Recently, additional cellular proteins, namely CHTOP, CIP29 and POLDIP3 have been proposed as novel hTREX components. Herein we extend our previous research and provide evidence that ORF57 interacts with CHTOP and CIP29, in contrast to POLDIP3. Moreover, depletion studies show both CHTOP and CIP29 effect ORF57-mediated viral mRNA processing. As such, these results suggest both CHTOP and CIP29 are hTREX components and are recruited to an ORF57-mediated vRNP
Systematic reduction of complex tropospheric chemical mechanisms, Part II: Lumping using a time-scale based approach
This paper presents a formal method of species lumping that can be applied automatically to intermediate compounds within detailed and complex tropospheric chemical reaction schemes. The method is based on grouping species with reference to their chemical lifetimes and reactivity structures. A method for determining the forward and reverse transformations between individual and lumped compounds is developed. Preliminary application to the Leeds Master Chemical Mechanism (MCMv2.0) has led to the removal of 734 species and 1777 reactions from the scheme, with minimal degradation of accuracy across a wide range of test trajectories relevant to polluted tropospheric conditions. The lumped groups are seen to relate to groups of peroxy acyl nitrates, nitrates, carbonates, oxepins, substituted phenols, oxeacids and peracids with similar lifetimes and reaction rates with OH. In combination with other reduction techniques, such as sensitivity analysis and the application of the quasi-steady state approximation (QSSA), a reduced mechanism has been developed that contains 35% of the number of species and 40% of the number of reactions compared to the full mechanism. This has led to a speed up of a factor of 8 in terms of computer calculation time within box model simulations
Are autistic traits in the general population stable across development?
There is accumulating evidence that autistic traits (AT) are on a continuum in the general population, with clinical autism representing the extreme end of a quantitative distribution. While the nature and severity of symptoms in clinical autism are known to persist over time, no study has examined the long-term stability of AT among typically developing toddlers. The current investigation measured AT in 360 males and 400 males from the general population close to two decades apart, using the Pervasive Developmental Disorder subscale of the Child Behavior Checklist in early childhood (M = 2.14 years; SD = 0.15), and the Autism-Spectrum Quotient in early adulthood (M = 19.50 years; SD = 0.70). Items from each scale were further divided into social (difficulties with social interaction and communication) and non-social (restricted and repetitive behaviours and interests) AT. The association between child and adult measurements of AT as well the influence of potentially confounding sociodemographic, antenatal and obstetric variables were assessed using Pearson's correlations and linear regression. For males, Total AT in early childhood were positively correlated with total AT (r = .16, p = .002) and social AT (r = .16, p = .002) in adulthood. There was also a positive correlation for males between social AT measured in early childhood and Total (r = .17, p = .001) and social AT (r = .16, p = .002) measured in adulthood. Correlations for non-social AT did not achieve significance in males. Furthermore, there was no significant longitudinal association in AT observed for males or females. Despite the constraints of using different measures and different raters at the two ages, this study found modest developmental stability of social AT from early childhood to adulthood in boys
Systematic reduction of complex tropospheric chemical mechanisms, Part I: sensitivity and time-scale analyses
International audienceExplicit mechanisms describing the complex degradation pathways of atmospheric volatile organic compounds (VOCs) are important, since they allow the study of the contribution of individual VOCS to secondary pollutant formation. They are computationally expensive to solve however, since they contain large numbers of species and a wide range of time-scales causing stiffness in the resulting equation systems. This paper and the following companion paper describe the application of systematic and automated methods for reducing such complex mechanisms, whilst maintaining the accuracy of the model with respect to important species and features. The methods are demonstrated via application to version 2 of the Leeds Master Chemical Mechanism. The methods of Jacobian analysis and overall rate sensitivity analysis proved to be efficient and capable of removing the majority of redundant reactions and species in the scheme across a wide range of conditions relevant to the polluted troposphere. The application of principal component analysis of the rate sensitivity matrix was computationally expensive due to its use of the decomposition of very large matrices, and did not produce significant reduction over and above the other sensitivity methods. The use of the quasi-steady state approximation (QSSA) proved to be an extremely successful method of removing the fast time-scales within the system, as demonstrated by a local perturbation analysis at each stage of reduction. QSSA species were automatically selected via the calculation of instantaneous QSSA errors based on user-selected tolerances. The application of the QSSA led to the removal of a large number of alkoxy radicals and excited Criegee bi-radicals via reaction lumping. The resulting reduced mechanism was shown to reproduce the concentration profiles of the important species selected from the full mechanism over a wide range of conditions, including those outside of which the reduced mechanism was generated. As a result of a reduction in the number of species in the scheme of a factor of 2, and a reduction in stiffness, the computational time required for simulations was reduced by a factor of 4 when compared to the full scheme
Systematic reduction of complex tropospheric chemical mechanisms using sensitivity and time-scale analyses
International audienceExplicit mechanisms describing the complex degradation pathways of atmospheric volatile organic compounds (VOCs) are important, since they allow the study of the contribution of individual VOCS to secondary pollutant formation. They are computationally expensive to solve however, since they contain large numbers of species and a wide range of time-scales causing stiffness in the resulting equation systems. This paper and the following companion paper describe the application of systematic and automated methods for reducing such complex mechanisms, whilst maintaining the accuracy of the model with respect to important species and features. The methods are demonstrated via application to version 2 of the Leeds Master Chemical Mechanism. The methods of local concentration sensitivity analysis and overall rate sensitivity analysis proved to be efficient and capable of removing the majority of redundant reactions and species in the scheme across a wide range of conditions relevant to the polluted troposphere. The application of principal component analysis of the rate sensitivity matrix was computationally expensive due to its use of the decomposition of very large matrices, and did not produce significant reduction over and above the other sensitivity methods. The use of the quasi-steady state approximation (QSSA) proved to be an extremely successful method of removing the fast time-scales within the system, as demonstrated by a local perturbation analysis at each stage of reduction. QSSA species were automatically selected via the calculation of instantaneous QSSA errors based on user-selected tolerances. The application of the QSSA led to the removal of a large number of alkoxy radicals and excited Criegee bi-radicals via reaction lumping. The resulting reduced mechanism was shown to reproduce the concentration profiles of the important species selected from the full mechanism over a wide range of conditions, including those outside of which the reduced mechanism was generated. As a result of a reduction in the number of species in the scheme of a factor of 2, and a reduction in stiffness, the computational time required for simulations was reduced by a factor of 4 when compared to the full scheme
Loudly sing cuckoo : More-than-human seasonalities in Britain
This research was funded by a grant from the Arts and Humanities Research Council, grant number AH/E009573/1.Peer reviewedPostprin
Systematic lumping of complex tropospheric chemical mechanisms using a time-scale based approach
International audienceThis paper presents a formal method of species lumping that can be applied automatically to intermediate compounds within detailed and complex tropospheric chemical reaction schemes. The method is based on grouping species with reference to their chemical lifetimes and reactivity structures. A method for determining the forward and reverse transformations between individual and lumped compounds is developed. Preliminary application to the Leeds Master Chemical Mechanism (MCMv2.0) has led to the removal of 734 species and 1777 reactions from the scheme, with minimal degradation of accuracy across a wide range of test trajectories relevant to polluted tropospheric conditions. The lumped groups are seen to relate to groups of peroxy acyl nitrates, nitrates, carbonates, oxepins, substituted phenols, oxeacids and peracids with similar lifetimes and reaction rates with OH. In combination with other reduction techniques, such as sensitivity analysis and the application of the quasi-steady state approximation (QSSA), a reduced mechanism has been developed that contains 35% of the number of species and 40% of the number of reactions compared to the full mechanism. This has led to a speed up of a factor of 8 in terms of computer calculation time within box model simulations
Radiative transfer and the energy equation in SPH simulations of star formation
We introduce and test a new and highly efficient method for treating the
thermal and radiative effects influencing the energy equation in SPH
simulations of star formation. The method uses the density, temperature and
gravitational potential of each particle to estimate a mean optical depth,
which then regulates the particle's heating and cooling. The method captures --
at minimal computational cost -- the effects of (i) the rotational and
vibrational degrees of freedom of H2, H2 dissociation, H0 ionisation, (ii)
opacity changes due to ice mantle melting, sublimation of dust, molecular
lines, H-, bound-free and free-free processes and electron scattering; (iv)
external irradiation; and (v) thermal inertia. The new algorithm reproduces the
results of previous authors and/or known analytic solutions. The computational
cost is comparable to a standard SPH simulation with a simple barotropic
equation of state. The method is easy to implement, can be applied to both
particle- and grid-based codes, and handles optical depths 0<tau<10^{11}.Comment: Submitted to A&A, recommended for publicatio
- …