182 research outputs found

    NGC 4138 - A Case Study in Counterrotating Disk Formation

    Get PDF
    The Sa(r) galaxy NGC 4138 has been recently found to contain an extensive counterrotating disk which appears to be still forming. Up to a third of the stars in the disk system may be on retrograde orbits. A counterrotating ring of H II regions, along with extended counterrotating H I gas, suggests that the retrograde material has been recently acquired in the gas phase and is still trickling in. Using numerical simulations, we have attempted to model the process by which the counterrotating mass has been accreted by this galaxy. We investigate two possibilities: continuous retrograde infall of gas, and a retrograde merger with a gas-rich dwarf galaxy. Both processes are successful in producing a counterrotating disk of the observed mass and dimensions without heating up the primary significantly. Contrary to our experience with a fiducial cold, thin primary disk, the gas-rich merger works well for the massive, compact primary disk of NGC 4138 even though the mass of the dwarf galaxy is a significant fraction of the mass of the primary disk. Although we have restricted ourselves mainly to coplanar infall and mergers, we report on one inclined infall simulation as well. We also explore the possibility that the H-alpha ring seen in the inner half of the disk is a consequence of counterrotating gas clouds colliding with corotating gas already present in the disk and forming stars in the process.Comment: To appear in ApJ, 21 pages, LaTeX (aaspp4) format, 17 figs (gzipped tar file) also available at ftp://bessel.mps.ohio-state.edu/pub/thakar/cr2/ or at http://www-astronomy.mps.ohio-state.edu/~thakar

    PHIL photoinjector test line

    Full text link
    LAL is now equiped with its own platform for photoinjectors tests and Research and Developement, named PHIL (PHotoInjectors at LAL). This facility has two main purposes: push the limits of the photoinjectors performances working on both the design and the associated technology and provide a low energy (MeV) short pulses (ps) electron beam for the interested users. Another very important goal of this machine will be to provide an opportunity to form accelerator physics students, working in a high technology environment. To achieve this goal a test line was realised equipped with an RF source, magnets and beam diagnostics. In this article we will desrcibe the PHIL beamline and its characteristics together with the description of the first two photoinjector realised in LAL and tested: the ALPHAX and the PHIN RF Guns

    First Results from Commissioning of the Phin Photo Injector for CTF3

    Get PDF
    Installation of the new photo-injector for the CTF3 drive beam (PHIN) has been completed on a stand-alone test bench. The photo-injector operates with a 2.5 cell RF gun at 3 GHz, using a Cs2Te photocathode illuminated by a UV laser beam. The test bench is equipped with transverse beam diagnostic as well as a 90-degree spectrometer. A grid of 100 micrometer wide slits can be inserted for emittance measurements. The laser used to trigger the photo-emission process is a Nd:YLF system consisting of an oscillator and a preamplifier operating at 1.5 GHz and two powerful amplifier stages. The infrared radiation produced is frequency quadrupled in two stages to obtain the UV. A Pockels cell allows adjusting the length of the pulse train between 50 nanoseconds and 50 microseconds. The nominal train length for CTF3 is 1.272 microseconds (1908 bunches). The first electron beam in PHIN was produced in November 2008. In this paper, results concerning the operation of the laser system and measurements performed to characterize the electron beam are presented

    Structural basis for CRISPR RNA-guided DNA recognition by Cascade

    Get PDF
    The CRISPR (clustered regularly interspaced short palindromic repeats) immune system in prokaryotes uses small guide RNAs to neutralize invading viruses and plasmids. In Escherichia coli, immunity depends on a ribonucleoprotein complex called Cascade. Here we present the composition and low-resolution structure of Cascade and show how it recognizes double-stranded DNA (dsDNA) targets in a sequence-specific manner. Cascade is a 405-kDa complex comprising five functionally essential CRISPR-associated (Cas) proteins (CasA1B2C6D1E1) and a 61-nucleotide CRISPR RNA (crRNA) with 5â€Č-hydroxyl and 2â€Č,3â€Č-cyclic phosphate termini. The crRNA guides Cascade to dsDNA target sequences by forming base pairs with the complementary DNA strand while displacing the noncomplementary strand to form an R-loop. Cascade recognizes target DNA without consuming ATP, which suggests that continuous invader DNA surveillance takes place without energy investment. The structure of Cascade shows an unusual seahorse shape that undergoes conformational changes when it binds target DNA.

    CRISPR Interference Directs Strand Specific Spacer Acquisition

    Get PDF
    Background: CRISPR/Cas is a widespread adaptive immune system in prokaryotes. This system integrates short stretches of DNA derived from invading nucleic acids into genomic CRISPR loci, which function as memory of previously encountered invaders. In Escherichia coli, transcripts of these loci are cleaved into small RNAs and utilized by the Cascade complex to bind invader DNA, which is then likely degraded by Cas3 during CRISPR interference. Results: We describe how a CRISPR-activated E. coli K12 is cured from a high copy number plasmid under non-selective conditions in a CRISPR-mediated way. Cured clones integrated at least one up to five anti-plasmid spacers in genomic CRISPR loci. New spacers are integrated directly downstream of the leader sequence. The spacers are non-randomly selected to target protospacers with an AAG protospacer adjacent motif, which is located directly upstream of the protospacer. A cooccurrence of PAM deviations and CRISPR repeat mutations was observed, indicating that one nucleotide from the PAM is incorporated as the last nucleotide of the repeat during integration of a new spacer. When multiple spacers were integrated in a single clone, all spacer targeted the same strand of the plasmid, implying that CRISPR interference caused by the first integrated spacer directs subsequent spacer acquisition events in a strand specific manner. Conclusions: The E. coli Type I-E CRISPR/Cas system provides resistance against bacteriophage infection, but also enables removal of residing plasmids. We established that there is a positive feedback loop between active spacers in a cluster – i

    Seasonality and the effects of weather on Campylobacter infections

    Get PDF
    Background Campylobacteriosis is a major public health concern. The weather factors that influence spatial and seasonal distributions are not fully understood. Methods To investigate the impacts of temperature and rainfall on Campylobacter infections in England and Wales, cases of Campylobacter were linked to local temperature and rainfall at laboratory postcodes in the 30 days before the specimen date. Methods for investigation included a comparative conditional incidence, wavelet, clustering, and time series analyses. Results The increase of Campylobacter infections in the late spring was significantly linked to temperature two weeks before, with an increase in conditional incidence of 0.175 cases per 100,000 per week for weeks 17 to 24; the relationship to temperature was not linear. Generalized structural time series model revealed that changes in temperature accounted for 33.3% of the expected cases of Campylobacteriosis, with an indication of the direction and relevant temperature range. Wavelet analysis showed a strong annual cycle with additional harmonics at four and six months. Cluster analysis showed three clusters of seasonality with geographic similarities representing metropolitan, rural, and other areas. Conclusions The association of Campylobacteriosis with temperature is likely to be indirect. High-resolution spatial temporal linkage of weather parameters and cases is important in improving weather associations with infectious diseases. The primary driver of Campylobacter incidence remains to be determined; other avenues, such as insect contamination of chicken flocks through poor biosecurity should be explored

    Differential effects of human and plant N-acetylglucosaminyltransferase I (GnTI) in plants

    Get PDF
    In plants and animals, the first step in complex type N-glycan formation on glycoproteins is catalyzed by N-acetylglucosaminyltransferase I (GnTI). We show that the cgl1-1 mutant of Arabidopsis, which lacks GnTI activity, is fully complemented by YFP-labeled plant AtGnTI, but only partially complemented by YFP-labeled human HuGnTI and that this is due to post-transcriptional events. In contrast to AtGnTI-YFP, only low levels of HuGnTI-YFP protein was detected in transgenic plants. In protoplast co-transfection experiments all GnTI-YFP fusion proteins co-localized with a Golgi marker protein, but only limited co-localization of AtGnTI and HuGnTI in the same plant protoplast. The partial alternative targeting of HuGnTI in plant protoplasts was alleviated by exchanging the membrane-anchor domain with that of AtGnTI, but in stably transformed cgl1-1 plants this chimeric GnTI still did not lead to full complementation of the cgl1-1 phenotype. Combined, the results indicate that activity of HuGnTI in plants is limited by a combination of reduced protein stability, alternative protein targeting and possibly to some extend to lower enzymatic performance of the catalytic domain in the plant biochemical environment

    Changes in the geographical distribution and abundance of the tick Ixodes ricinus during the past 30 years in Sweden

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Ixodes ricinus </it>is the main vector in Europe of human-pathogenic Lyme borreliosis (LB) spirochaetes, the tick-borne encephalitis virus (TBEV) and other pathogens of humans and domesticated mammals. The results of a previous 1994 questionnaire, directed at people living in Central and North Sweden (Svealand and Norrland) and aiming to gather information about tick exposure for humans and domestic animals, suggested that <it>Ixodes ricinus </it>ticks had become more widespread in Central Sweden and the southern part of North Sweden from the early 1980s to the early 1990s. To investigate whether the expansion of the tick's northern geographical range and the increasing abundance of ticks in Sweden were still occurring, in 2009 we performed a follow-up survey 16 years after the initial study.</p> <p>Methods</p> <p>A questionnaire similar to the one used in the 1994 study was published in Swedish magazines aimed at dog owners, home owners, and hunters. The questionnaire was published together with a popular science article about the tick's biology and role as a pathogen vector in Sweden. The magazines were selected to get information from people familiar with ticks and who spend time in areas where ticks might be present.</p> <p>Results</p> <p>Analyses of data from both surveys revealed that during the near 30-year period from the early 1980s to 2008, <it>I. ricinus </it>has expanded its distribution range northwards. In the early 1990s ticks were found in new areas along the northern coastline of the Baltic Sea, while in the 2009 study, ticks were reported for the first time from many locations in North Sweden. This included locations as far north as 66°N and places in the interior part of North Sweden. During this 16-year period the tick's range in Sweden was estimated to have increased by 9.9%. Most of the range expansion occurred in North Sweden (north of 60°N) where the tick's coverage area doubled from 12.5% in the early 1990s to 26.8% in 2008. Moreover, according to the respondents, the abundance of ticks had increased markedly in LB- and TBE-endemic areas in South (Götaland) and Central Sweden.</p> <p>Conclusions</p> <p>The results suggest that <it>I. ricinus </it>has expanded its range in North Sweden and has become distinctly more abundant in Central and South Sweden during the last three decades. However, in the northern mountain region <it>I. ricinus </it>is still absent. The increased abundance of the tick can be explained by two main factors: First, the high availability of large numbers of important tick maintenance hosts, i.e., cervids, particularly roe deer (<it>Capreolus capreolus</it>) during the last three decades. Second, a warmer climate with milder winters and a prolonged growing season that permits greater survival and proliferation over a larger geographical area of both the tick itself and deer. High reproductive potential of roe deer, high tick infestation rate and the tendency of roe deer to disperse great distances may explain the range expansion of <it>I. ricinus </it>and particularly the appearance of new TBEV foci far away from old TBEV-endemic localities. The geographical presence of LB in Sweden corresponds to the distribution of <it>I. ricinus</it>. Thus, LB is now an emerging disease risk in many parts of North Sweden. Unless countermeasures are undertaken to keep the deer populations, particularly <it>C. capreolus </it>and <it>Dama dama</it>, at the relatively low levels that prevailed before the late 1970s - especially in and around urban areas where human population density is high - by e.g. reduced hunting of red fox (<it>Vulpes vulpes</it>) and lynx (<it>Lynx lynx</it>), the incidences of human LB and TBE are expected to continue to be high or even to increase in Sweden in coming decades.</p

    Cas3 is a limiting factor for CRISPR-Cas immunity in Escherichia coli cells lacking H-NS

    Get PDF
    Background: CRISPR-Cas systems provide adaptive immunity to mobile genetic elements in prokaryotes. In many bacteria, including E. coli, a specialized ribonucleoprotein complex called Cascade enacts immunity by “an interference reaction" between CRISPR encoded RNA (crRNA) and invader DNA sequences called “protospacers”. Cascade recognizes invader DNA via short “protospacer adjacent motif” (PAM) sequences and crRNA-DNA complementarity. This triggers degradation of invader DNA by Cas3 protein and in some circumstances stimulates capture of new invader DNA protospacers for incorporation into CRISPR as “spacers” by Cas1 and Cas2 proteins, thus enhancing immunity. Co-expression of Cascade, Cas3 and crRNA is effective at giving E. coli cells resistance to phage lysis, if a transcriptional repressor of Cascade and CRISPR, H-NS, is inactivated (Δhns). We present further genetic analyses of the regulation of CRISPR-Cas mediated phage resistance in Δhns E. coli cells. Results: We observed that E. coli Type I-E CRISPR-Cas mediated resistance to phage λ was strongly temperature dependent, when repeating previously published experimental procedures. Further genetic analyses highlighted the importance of culture conditions for controlling the extent of CRISPR immunity in E. coli. These data identified that expression levels of cas3 is an important limiting factor for successful resistance to phage. Significantly, we describe the new identification that cas3 is also under transcriptional control by H-NS but that this is exerted only in stationary phase cells. Conclusions: Regulation of cas3 is responsive to phase of growth, and to growth temperature in E. coli, impacting on the efficacy of CRISPR-Cas immunity in these experimental systems
    • 

    corecore