321 research outputs found

    Scaling and Decoherence in the Out-of-Equilibrium Kondo Model

    Full text link
    We study the Kondo effect in quantum dots in an out-of-equilibrium state due to an applied dc-voltage bias. Using the method of infinitesimal unitary transformations (flow equations), we develop a perturbative scaling picture that naturally contains both equilibrium coherent and non-equilibrium decoherence effects. This framework allows one to study the competition between Kondo effect and current-induced decoherence, and it establishes a large regime dominated by single-channel Kondo physics for asymmetrically coupled quantum dots.Comment: 4 pages, 3 figures; v2: minor changes (typos corrected, esp. in Eqs. (3), (4), references updated, improved layout for figures

    Exact trimer ground states on a spin-1 chain

    Full text link
    We construct a new spin-1 model on a chain. Its ground state is determined exactly which is three-fold degenerate by breaking translational invariance. Thus we have trimerization. Excited states cannot be obtained exactly, but we determine a few low-lying ones by using trial states, among them solitons

    Emergence of Quintet Superfluidity in the Chain of Partially Polarized Spin-3/2 Ultracold Atom

    Get PDF
    The system of ultracold atoms with hyperfine spin F=3/2F=3/2 might be unstable against the formation of quintet pairs if the interaction is attractive in the quintet channel. We have investigated the behavior of correlation functions in a model including only s-wave interactions at quarter filling by large-scale density-matrix renormalization-group simulations. We show that the correlations of quintet pairs become quasi-long-ranged, when the system is partially polarized, leading to the emergence of various mixed superfluid phases in which BCS-like pairs carrying different magnetic moment coexist.Comment: 4 pages, 4 figures; significantly rewritten compared to the first versio

    Mott transition and dimerization in the one-dimensional SU(n)(n) Hubbard model

    Full text link
    The one-dimensional SU(n)(n) Hubbard model is investigated numerically for n=2,3,4n=2,3,4, and 5 at half filling and 1/n1/n filling using the density-matrix renormalization-group (DMRG) method. The energy gaps and various quantum information entropies are calculated. In the half-filled case, finite spin and charge gaps are found for arbitrary positive UU if n>2n > 2. Furthermore, it is shown that the transition to the gapped phase at Uc=0U_{\rm c}=0 is of Kosterlitz-Thouless type and is accompanied by a bond dimerization both for even and odd nn. In the 1/n1/n-filled case, the transition has similar features as the metal-insulator transition in the half-filled SU(2) Hubbard model. The charge gap opens exponentially slowly for U>Uc=0U>U_{\rm c}=0, the spin sector remains gapless, and the ground state is non-dimerized.Comment: 9 pages, 12 figure

    Quantum first order phase transitions

    Full text link
    The scaling theory of critical phenomena has been successfully extended for classical first order transitions even though the correlation length does not diverge in these transitions. In this paper we apply the scaling ideas to quantum first order transitions. The usefulness of this approach is illustrated treating the problems of a superconductor coupled to a gauge field and of a biquadratic Heisenberg chain, at zero temperature. In both cases there is a latent energy associated with their discontinuous quantum transitions. We discuss the effects of disorder and give a general criterion for it's relevance in these transitions.Comment: 6 pages, 2 figures, misprints corrected and a reference added. Version published in PHYSICA

    Spatially nonuniform phases in the one-dimensional SU(n) Hubbard model for commensurate fillings

    Full text link
    The one-dimensional repulsive SU(n)(n) Hubbard model is investigated analytically by bosonization approach and numerically using the density-matrix renormalization-group (DMRG) method for n=3,4n=3,4, and 5 for commensurate fillings f=p/qf=p/q where pp and qq are relatively prime. It is shown that the behavior of the system is drastically different depending on whether q>nq>n, q=nq=n, or qnqn, the umklapp processes are irrelevant, the model is equivalent to an nn-component Luttinger liquid with central charge c=nc=n. When q=nq=n, the charge and spin modes are decoupled, the umklapp processes open a charge gap for finite U>0U>0, whereas the spin modes remain gapless and the central charge c=n1c=n-1. The translational symmetry is not broken in the ground state for any nn. On the other hand, when q<nq<n, the charge and spin modes are coupled, the umklapp processes open gaps in all excitation branches, and a spatially nonuniform ground state develops. Bond-ordered dimerized, trimerized or tetramerized phases are found depending on the filling.Comment: 10 pages, 11 figure

    Energy relaxation due to magnetic impurities in mesoscopic wires: Logarithmic approach

    Full text link
    The transport in mesoscopic wires with large applied bias voltage has recently attracted great interest by measuring the energy distribution of the electrons at a given point of the wire, in Saclay. In the diffusive limit with negligible energy relaxation that shows two sharp steps at the Fermi energies of the two contacts, which are broadened due to the energy relaxation. In some of the experiments the broadening is reflecting an anomalous energy relaxation rate proportional to E2E^{-2} instead of E3/2E^{-3/2} valid for Coulomb electron-electron interaction, where EE is the energy transfer. Later it has been suggested that such relaxation rate can be due to electron-electron interaction mediated by Kondo impurities. In the present paper the latter is systematically studied in the logarithmic approximation valid above the Kondo temperature. In the case of large applied bias voltage Kondo resonances are formed at the steps of the distribution function and they are narrowed by increasing the bias. An additional Korringa energy broadening occurs for the spins which smears the Kondo resonances, and the renormalized coupling can be replaced by a smooth but essentially enhanced average coupling (factor of 8-10). Thus the experimental data can be described by formulas without logarithmic Kondo corrections, but with enhanced coupling. In certain regions of large bias, that averaged coupling depends weakly on the bias. In those cases the distribution function depends only on the ratio of the electron energy and the bias, showing scaling behavior. The impurity concentrations estimated from those experiments and other dephasing experiments can be very different, and a possible explanation considering the surface spin anisotropy due to strong spin-orbit interaction is the subject of our earlier paper.Comment: 12 pages, RevTex

    Non-Equilibrium Transport through a Kondo-Dot in a Magnetic Field: Perturbation Theory and Poor Man's Scaling

    Get PDF
    We consider electron transport through a quantum dot described by the Kondo model in the regime of large transport voltage V in the presence of a magnetic field B with max(V,B) >> T_K. The electric current I and the local magnetization M are found to be universal functions of V/T_K and B/T_K, where T_K is the equilibrium Kondo temperature. We present a generalization of the perturbative renormalization group to frequency dependent coupling functions, as necessitated by the structure of bare perturbation theory. We calculate I and M within a poor man's scaling approach and find excellent agreement with experiment.Comment: version accepted in PRL, notations changed, parts rewritten, figures modified, references and some corrections adde

    Phase Transitions in the One-Dimensional Pair-Hopping Model: a Renormalization Group Study

    Full text link
    The phase diagram of a one-dimensional tight-binding model with a pair-hopping term (amplitude V) has been the subject of some controvery. Using two-loop renormalization group equations and the density matrix renormalization group with lengths L<=60, we argue that no spin-gap transition occurs at half-filling for positive V, contrary to recent claims. However, we point out that away from half-filling, a *phase-separation* transition occurs at finite V. This transition and the spin-gap transition occuring at half-filling and *negative* V are analyzed numerically.Comment: 7 pages RevTeX, 6 uuencoded figures which can be (and by default are) directly included. Received by Phys. Rev. B 20 April 199

    Probable absence of a quadrupolar spin-nematic phase in the bilinear-biquadratic spin-1 chain

    Full text link
    We study numerically the ground-state phase diagram of the bilinear-biquadratic spin-1 chain near the ferromagnetic instability point, where the existence of a gapped or gapless nondimerized quantum nematic phase has been suggested. Our results, obtained by a highly accurate density-matrix renormalization-group (DMRG) calculation are consistent with the view that the order parameter characterizing the dimer phase vanishes only at the point where the system becomes ferromagnetic, although the existence of a gapped or gapless nondimerized phase in a very narrow parameter range between the ferromagnetic and the dimerized regimes cannot be ruled out.Comment: 6 pages, 6 figure
    corecore