241 research outputs found

    Colloidal particles at a nematic-isotropic interface: effects of confinement

    Full text link
    When captured by a flat nematic-isotropic interface, colloidal particles can be dragged by it. As a result spatially periodic structures may appear, with the period depending on a particle mass, size, and interface velocity~\cite{west.jl:2002}. If liquid crystal is sandwiched between two substrates, the interface takes a wedge-like shape, accommodating the interface-substrate contact angle and minimizing the director distortions on its nematic side. Correspondingly, particles move along complex trajectories: they are first captured by the interface and then `glide' towards its vertex point. Our experiments quantify this scenario, and numerical minimization of the Landau-de Gennes free energy allow for a qualitative description of the interfacial structure and the drag force.Comment: 7 pages, 9 figure

    Shock waves in transonic channel flows at moderate Reynolds numbers

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/76375/1/AIAA-9312-844.pd

    Change of tRNA identity leads to a divergent orthogonal histidyl-tRNA synthetase/tRNAHis pair

    Get PDF
    Mature tRNAHis has at its 5′-terminus an extra guanylate, designated as G−1. This is the major recognition element for histidyl-tRNA synthetase (HisRS) to permit acylation of tRNAHis with histidine. However, it was reported that tRNAHis of a subgroup of α-proteobacteria, including Caulobacter crescentus, lacks the critical G−1 residue. Here we show that recombinant C. crescentus HisRS allowed complete histidylation of a C. crescentus tRNAHis transcript (lacking G−1). The addition of G−1 did not improve aminoacylation by C. crescentus HisRS. However, mutations in the tRNAHis anticodon caused a drastic loss of in vitro histidylation, and mutations of bases A73 and U72 also reduced charging. Thus, the major recognition elements in C. crescentus tRNAHis are the anticodon, the discriminator base and U72, which are recognized by the divergent (based on sequence similarity) C. crescentus HisRS. Transplantation of these recognition elements into an Escherichia coli tRNAHis template, together with addition of base U20a, created a competent substrate for C. crescentus HisRS. These results illustrate how a conserved tRNA recognition pattern changed during evolution. The data also uncovered a divergent orthogonal HisRS/tRNAHis pair

    Optimization of a solid-state electron spin qubit using gate set tomography

    Full text link
    State of the art qubit systems are reaching the gate fidelities required for scalable quantum computation architectures. Further improvements in the fidelity of quantum gates demands characterization and benchmarking protocols that are efficient, reliable and extremely accurate. Ideally, a benchmarking protocol should also provide information on how to rectify residual errors. Gate set tomography (GST) is one such protocol designed to give detailed characterization of as-built qubits. We implemented GST on a high-fidelity electron-spin qubit confined by a single 31P atom in 28Si. The results reveal systematic errors that a randomized benchmarking analysis could measure but not identify, whereas GST indicated the need for improved calibration of the length of the control pulses. After introducing this modification, we measured a new benchmark average gate fidelity of , an improvement on the previous value of . Furthermore, GST revealed high levels of non-Markovian noise in the system, which will need to be understood and addressed when the qubit is used within a fault-tolerant quantum computation scheme

    Mitochondrial genomes as living ‘fossils’

    Get PDF
    corecore