271 research outputs found
A more detailed look at the Opacities for Enriched Carbon and Oxygen Mixtures
We have included opacity tables in our stellar evolution code that enable us
to accurately model the structure of stars composed of mixtures with carbon and
oxygen independently enhanced relative to solar. We present tests to
demonstrate the effects of the new tables. Two of these are practical examples,
the effect on the evolution of a thermally pulsing asymptotic giant branch star
and a Wolf-Rayet Star. The changes are small but perceptible.Comment: 6 pages, 3 figures, 5 tables. Refereed version with corrections
resubmitted to MNRA
Radiative transfer in very optically thick circumstellar disks
In this paper we present two efficient implementations of the diffusion
approximation to be employed in Monte Carlo computations of radiative transfer
in dusty media of massive circumstellar disks. The aim is to improve the
accuracy of the computed temperature structure and to decrease the computation
time. The accuracy, efficiency and applicability of the methods in various
corners of parameter space are investigated. The effects of using these methods
on the vertical structure of the circumstellar disk as obtained from
hydrostatic equilibrium computations are also addressed. Two methods are
presented. First, an energy diffusion approximation is used to improve the
accuracy of the temperature structure in highly obscured regions of the disk,
where photon counts are low. Second, a modified random walk approximation is
employed to decrease the computation time. This modified random walk ensures
that the photons that end up in the high-density regions can quickly escape to
the lower density regions, while the energy deposited by these photons in the
disk is still computed accurately. A new radiative transfer code, MCMax, is
presented in which both these diffusion approximations are implemented. These
can be used simultaneously to increase both computational speed and decrease
statistical noise. We conclude that the diffusion approximations allow for fast
and accurate computations of the temperature structure, vertical disk structure
and observables of very optically thick circumstellar disks.Comment: Accepted for publication in A&
Charged Annular Disks and Reissner-Nordstr\"{o}m Type Black Holes from Extremal Dust
We present the first analytical superposition of a charged black hole with an
annular disk of extremal dust. In order to obtain the solutions, we first solve
the Einstein-Maxwell field equations for sources that represent disk-like
configurations of matter in confomastatic spacetimes by assuming a functional
dependence among the metric function, the electric potential and an auxiliary
function,which is taken as a solution of the Laplace equation. We then employ
the Lord Kelvin Inversion Method applied to models of finite extension in order
to obtain annular disks. The structures obtained extend to infinity, but their
total masses are finite and all the energy conditions are satisfied. Finally,
we observe that the extremal Reissner-Nordstr\"{o}m black hole can be embedded
into the center of the disks by adding a boundary term in the inversion.Comment: 17 revtex pages, 8 eps figure
Nonadiabatic charged spherical gravitational collapse
We present a complete set of the equations and matching conditions required
for the description of physically meaningful charged, dissipative, spherically
symmetric gravitational collapse with shear. Dissipation is described with both
free-streaming and diffusion approximations. The effects of viscosity are also
taken into account. The roles of different terms in the dynamical equation are
analyzed in detail. The dynamical equation is coupled to a causal transport
equation in the context of Israel-Stewart theory. The decrease of the inertial
mass density of the fluid, by a factor which depends on its internal
thermodynamic state, is reobtained, with the viscosity terms included. In
accordance with the equivalence principle, the same decrease factor is obtained
for the gravitational force term. The effect of the electric charge on the
relation between the Weyl tensor and the inhomogeneity of energy density is
discussed.Comment: 23 pages, Latex. To appear in Phys. Rev. D. Some references correcte
Exact Relativistic Static Charged Dust Disks and Non-axisymmetric Structures
The well-known ``displace, cut and reflect'' method used to generate disks
from given solutions of Einstein field equations is applied to the
superposition of twoextreme Reissner-Nordstrom black holes to construct disks
made of charged dust and alsonon-axisymmetric planar distributions of charged
dust on the z=0 plane. They are symmetric with respect to twoor one coordinate
axes, depending whether the black holes have equal or unequal masses,
respectively.For these non-axisymmetric distributions of matter we also study
the effective potential for geodesic motion of neutral test particles.Comment: Classical and Quantum Gravity (in press). 15 pages, LaTex, 8 .eps
fig
Novae Ejecta as Colliding Shells
Following on our initial absorption-line analysis of fifteen novae spectra we
present additional evidence for the existence of two distinct components of
novae ejecta having different origins. As argued in Paper I one component is
the rapidly expanding gas ejected from the outer layers of the white dwarf by
the outburst. The second component is pre-existing outer, more slowly expanding
circumbinary gas that represents ejecta from the secondary star or accretion
disk. We present measurements of the emission-line widths that show them to be
significantly narrower than the broad P Cygni profiles that immediately precede
them. The emission profiles of novae in the nebular phase are distinctly
rectangular, i.e., strongly suggestive of emission from a relatively thin,
roughly spherical shell. We thus interpret novae spectral evolution in terms of
the collision between the two components of ejecta, which converts the early
absorption spectrum to an emission-line spectrum within weeks of the outburst.
The narrow emission widths require the outer circumbinary gas to be much more
massive than the white dwarf ejecta, thereby slowing the latter's expansion
upon collision. The presence of a large reservoir of circumbinary gas at the
time of outburst is suggestive that novae outbursts may sometime be triggered
by collapse of gas onto the white dwarf, as occurs for dwarf novae, rather than
steady mass transfer through the inner Lagrangian point.Comment: 12 pages, 3 figures; Revised manuscript; Accepted for publication in
Astrophysics & Space Scienc
Radiating Shear-Free Gravitational Collapse with Charge
We present a new shear free model for the gravitational collapse of a
spherically symmetric charged body. We propose a dissipative contraction with
radiation emitted outwards. The Einstein field equations, using the junction
conditions and an ansatz, are integrated numerically. A check of the energy
conditions is also performed. We obtain that the charge delays the black hole
formation and it can even halt the collapse.Comment: 22 pages, 9 figures. It has been corrected several typos and included
several references. Accepted for publication in GR
Asteroseismology
Asteroseismology is the determination of the interior structures of stars by
using their oscillations as seismic waves. Simple explanations of the
astrophysical background and some basic theoretical considerations needed in
this rapidly evolving field are followed by introductions to the most important
concepts and methods on the basis of example. Previous and potential
applications of asteroseismology are reviewed and future trends are attempted
to be foreseen.Comment: 38 pages, 13 figures, to appear in: "Planets, Stars and Stellar
Systems", eds. T. D. Oswalt et al., Springer Verla
Beeldcultuur, een drieluik.I: Deconstructie van het fenomeen culturele studies
An important process in glass manufacture is the forming of the product. The forming process takes place at high rate, involves extreme temperatures and is characterised by large deformations. The process can be modelled as a coupled thermodynamical/mechanical problem including the interaction between glass, air and equipment. In this paper a general mathematical model for glass forming is derived, which is specified for different forming processes, in particular pressing and blowing. The model should be able to correctly represent the flow of the glass and the energy exchange during the process. Various modelling aspects are discussed for each process, while several key issues, such as the motion of the plunger and the evolution of the glass-air interfaces, are examined thoroughly. Finally, some examples of process simulations for existing simulation tools are provided
Post-Operative Pain After Knee Arthroscopy and Related Factors
The aim of this study was to explore the intensity of post-arthroscopy knee pain during the first 24 hours, and to study the influence of pre-operative pain, tourniquet time and amount of surgical trauma on post-arthroscopy pain. In 78 male patients that underwent elective arthroscopic menisectomy or diagnostic arthroscopy of the knee, preoperative and post-operative pain were registered using the Visual Analogue Scale. Variance for repeated measures and for independent observations was analysed. Supplementary analgesia was required for 23% of the patients, more often in the recovery room and between 2 and 8 hours postoperatively. Of all factors analyzed, only time was statistically significant in determining the level of post-operative pain. Supplementary analgesia was required only in patients that underwent operative arthroscopy, and more often in patients with tourniquet time of more than 40 minutes. In conclusions, post-operative time is the most significant factor related to the post-arthroscopy knee pain
- …
