9 research outputs found

    THE INFLUENCE OF THERMAL MODIFICATION ON VENEER BOND STRENGTH

    No full text
    The purpose of this study was to investigate the effect of thermal modification on birchveneer properties relevant in plywood manufacture. The wood material used in thisstudy was a birch (Betula pendula Roth) stem sectioned into small logs nominally 1.2 min length. The logs were completely immersed in a water tank heated to either 70 °C or20 °C. The soaked logs were rotary cut on an industrial scale lathe (Model 3HV66;Raute Oyj, Lahti, Finland) into veneer with a nominal thickness of 0.8 mm.Veneer specimens (150x150 mm2) were cut and thermally modified at 200°C in steamconditions for 2, 4 and 8 h. Mass loss and equilibrium moisture content (EMC) weremeasured after modification. The bond strength of the veneers was measured withautomated bonding evaluation system (ABES- Adhesive Evaluation Systems, Inc.,Corvallis, Oregon, USA) using phenol formaldehyde (PF) resin (Prefere 14J021, PrefereResins Finland Oy, Hamina, Finland). Specimens (20 x 117 mm2), were cut from theconditioned veneer sheets. A liquid PF resin was applied to an area of 5 x 20 mm2 atone end of the veneer specimens (approx. spread rate 100 g m-2). After adhesiveapplication, the veneer-resin assembly was placed into the ABES and after 180 s ofpressing (130 °C and 2.0 MPa) the shear strength of adhesive bond was measured.As expected from previous studies, the mass loss increased and EMC reduced withlonger thermal modification time. No significant difference in mass loss or EMCbetween log soaking temperatures was recorded in this study. The thermal modificationslightly reduced the bond strength; however, longer treatment time did not furtherreduce the bond strength. Therefore, based on this study, thermally modified veneerscould be successfully bonded andQC 20200331EnWoBi

    THE INFLUENCE OF THERMAL MODIFICATION ON VENEER BOND STRENGTH

    No full text
    The purpose of this study was to investigate the effect of thermal modification on birchveneer properties relevant in plywood manufacture. The wood material used in thisstudy was a birch (Betula pendula Roth) stem sectioned into small logs nominally 1.2 min length. The logs were completely immersed in a water tank heated to either 70 °C or20 °C. The soaked logs were rotary cut on an industrial scale lathe (Model 3HV66;Raute Oyj, Lahti, Finland) into veneer with a nominal thickness of 0.8 mm.Veneer specimens (150x150 mm2) were cut and thermally modified at 200°C in steamconditions for 2, 4 and 8 h. Mass loss and equilibrium moisture content (EMC) weremeasured after modification. The bond strength of the veneers was measured withautomated bonding evaluation system (ABES- Adhesive Evaluation Systems, Inc.,Corvallis, Oregon, USA) using phenol formaldehyde (PF) resin (Prefere 14J021, PrefereResins Finland Oy, Hamina, Finland). Specimens (20 x 117 mm2), were cut from theconditioned veneer sheets. A liquid PF resin was applied to an area of 5 x 20 mm2 atone end of the veneer specimens (approx. spread rate 100 g m-2). After adhesiveapplication, the veneer-resin assembly was placed into the ABES and after 180 s ofpressing (130 °C and 2.0 MPa) the shear strength of adhesive bond was measured.As expected from previous studies, the mass loss increased and EMC reduced withlonger thermal modification time. No significant difference in mass loss or EMCbetween log soaking temperatures was recorded in this study. The thermal modificationslightly reduced the bond strength; however, longer treatment time did not furtherreduce the bond strength. Therefore, based on this study, thermally modified veneerscould be successfully bonded andQC 20200331EnWoBi
    corecore