18 research outputs found

    Improving natural ventilation in hospital waiting and consulting rooms to reduce nosocomial tuberculosis transmission risk in a low resource setting.

    Get PDF
    BACKGROUND: TB transmission in healthcare facilities is an important public health problem, especially in the often-overcrowded settings of HIV treatment scale-up. The problem is compounded by the emergence of drug resistant TB. Natural ventilation is a low-cost environmental control measure for TB infection control where climate permits that is suited to many different areas in healthcare facilities. There are no published data on the effect of simple structural modifications to existing hospital infrastructure to improve natural ventilation and reduce the risk of nosocomial TB transmission. The purpose of this study was to measure the effect of simple architectural modifications to existing hospital waiting and consulting rooms in a low resource setting on (a) improving natural ventilation and (b) reducing modelled TB transmission risk. METHODS: Room ventilation was measured pre- and post-modification using a carbon dioxide tracer-gas technique in four waiting rooms and two consulting rooms in two hospitals in Lima, Peru. Modifications included additional windows for cross-ventilation (n = 2 rooms); removing glass from unopenable windows (n = 2); creation of an open skylight (n = 1); re-building a waiting-room in the open air (n = 1). Changes in TB transmission risk for waiting patients, or healthcare workers in consulting rooms, were estimated using mathematical modelling. RESULTS: As a result of the infrastructure modifications, room ventilation in the four waiting rooms increased from mean 5.5 to 15; 11 to 16; 10 to 17; and 9 to 66 air-changes/hour respectively; and in the two consulting rooms from mean 3.6 to 17; and 2.7 to 12 air-changes/hour respectively. There was a median 72% reduction (inter-quartile range 51-82%) in calculated TB transmission risk for healthcare workers or waiting patients. The modifications cost <US75infourrooms,andUS75 in four rooms, and US1000 and US$7000 in the remaining two rooms. CONCLUSIONS: Simple modifications to existing hospital infrastructure considerably increased natural ventilation, and greatly reduced modelled TB transmission risk at little cost

    Upper-Room Ultraviolet Light and Negative Air Ionization to Prevent Tuberculosis Transmission

    Get PDF
    Background Institutional tuberculosis (TB) transmission is an important public health problem highlighted by the HIV/AIDS pandemic and the emergence of multidrug- and extensively drug-resistant TB. Effective TB infection control measures are urgently needed. We evaluated the efficacy of upper-room ultraviolet (UV) lights and negative air ionization for preventing airborne TB transmission using a guinea pig air-sampling model to measure the TB infectiousness of ward air. Methods and Findings For 535 consecutive days, exhaust air from an HIV-TB ward in Lima, Perú, was passed through three guinea pig air-sampling enclosures each housing approximately 150 guinea pigs, using a 2-d cycle. On UV-off days, ward air passed in parallel through a control animal enclosure and a similar enclosure containing negative ionizers. On UV-on days, UV lights and mixing fans were turned on in the ward, and a third animal enclosure alone received ward air. TB infection in guinea pigs was defined by monthly tuberculin skin tests. All guinea pigs underwent autopsy to test for TB disease, defined by characteristic autopsy changes or by the culture of Mycobacterium tuberculosis from organs. 35% (106/304) of guinea pigs in the control group developed TB infection, and this was reduced to 14% (43/303) by ionizers, and to 9.5% (29/307) by UV lights (both p < 0.0001 compared with the control group). TB disease was confirmed in 8.6% (26/304) of control group animals, and this was reduced to 4.3% (13/303) by ionizers, and to 3.6% (11/307) by UV lights (both p < 0.03 compared with the control group). Time-to-event analysis demonstrated that TB infection was prevented by ionizers (log-rank 27; p < 0.0001) and by UV lights (log-rank 46; p < 0.0001). Time-to-event analysis also demonstrated that TB disease was prevented by ionizers (log-rank 3.7; p = 0.055) and by UV lights (log-rank 5.4; p = 0.02). An alternative analysis using an airborne infection model demonstrated that ionizers prevented 60% of TB infection and 51% of TB disease, and that UV lights prevented 70% of TB infection and 54% of TB disease. In all analysis strategies, UV lights tended to be more protective than ionizers. Conclusions Upper-room UV lights and negative air ionization each prevented most airborne TB transmission detectable by guinea pig air sampling. Provided there is adequate mixing of room air, upper-room UV light is an effective, low-cost intervention for use in TB infection control in high-risk clinical settings

    Microscopic-observation drug-susceptibility assay for the diagnosis of TB.

    Get PDF
    BACKGROUND: New diagnostic tools are urgently needed to interrupt the transmission of tuberculosis and multidrug-resistant tuberculosis. Rapid, sensitive detection of tuberculosis and multidrug-resistant tuberculosis in sputum has been demonstrated in proof-of-principle studies of the microscopic-observation drug-susceptibility (MODS) assay, in which broth cultures are examined microscopically to detect characteristic growth. METHODS: In an operational setting in Peru, we investigated the performance of the MODS assay for culture and drug-susceptibility testing in three target groups: unselected patients with suspected tuberculosis, prescreened patients at high risk for tuberculosis or multidrug-resistant tuberculosis, and unselected hospitalized patients infected with the human immunodeficiency virus. We compared the MODS assay head-to-head with two reference methods: automated mycobacterial culture and culture on Löwenstein-Jensen medium with the proportion method. RESULTS: Of 3760 sputum samples, 401 (10.7%) yielded cultures positive for Mycobacterium tuberculosis. Sensitivity of detection was 97.8% for MODS culture, 89.0% for automated mycobacterial culture, and 84.0% for Löwenstein-Jensen culture (P<0.001); the median time to culture positivity was 7 days, 13 days, and 26 days, respectively (P<0.001), and the median time to the results of susceptibility tests was 7 days, 22 days, and 68 days, respectively. The incremental benefit of a second MODS culture was minimal, particularly in patients at high risk for tuberculosis or multidrug-resistant tuberculosis. Agreement between MODS and the reference standard for susceptibility was 100% for rifampin, 97% for isoniazid, 99% for rifampin and isoniazid (combined results for multidrug resistance), 95% for ethambutol, and 92% for streptomycin (kappa values, 1.0, 0.89, 0.93, 0.71, and 0.72, respectively). CONCLUSIONS: A single MODS culture of a sputum sample offers more rapid and sensitive detection of tuberculosis and multidrug-resistant tuberculosis than the existing gold-standard methods used

    Zinc Cream and Reliability of Tuberculosis Skin Testing

    Get PDF
    In 50 healthy Peruvian shantytown residents, zinc cream applied to tuberculosis skin-test sitescaused a 32% increase in induration compared with placebo cream. Persons with lower plasma zinc had smaller skin-test reactions and greater augmentation with zinc cream. Zinc deficiency caused false-negative skin-test results, and topical zinc supplementation augmented antimycobacterial immune responses enough to improve diagnosis

    La cuerda dulce – a tolerability and acceptability study of a novel approach to specimen collection for diagnosis of paediatric pulmonary tuberculosis

    Get PDF
    BACKGROUND: Recent data demonstrate the utility of the string test for the diagnosis of sputum-scarce HIV-associated TB in adults. We hypothesized that, if well-tolerated by children, this simple tool might offer a breakthrough in paediatric TB diagnosis. Thus the objective of this study, undertaken in the paediatric service of the Hospital Nacional Dos de Mayo, Lima, Perú, was to determine the tolerability and acceptability of the string test to paediatric TB suspects, their parents and nursing staff. METHODS: 22 paediatric subjects aged 3–14 years (median 8) under investigation for TB were invited to undergo 2 string tests (four-hour downtime each). Subjective and objective pain and discomfort rating scales were used to assess the perception of the subject, parent and attending nurse. RESULTS: Patients as young as 4 years tolerated the procedure extremely well with 84% willing to undergo a second procedure. Peak discomfort at the time of swallowing and of string retrieval was mild (30% of maximum possible score) and brief as judged by visual analogue ratings and objective indicators. Good concordance of parent/child and objective/subjective ratings strengthened the validity of these findings. CONCLUSION: The string test is well tolerated and achievable for most paediatric TB suspects as young as 4 years. A formal prospective paediatric efficacy study is now needed

    Tuberculosis Diagnosis and Multidrug Resistance Testing by Direct Sputum Culture in Selective Broth without Decontamination or Centrifugation ▿ †

    Get PDF
    Tuberculosis culture usually requires sputum decontamination and centrifugation to prevent cultures from being overgrown by contaminating bacteria and fungi. However, decontamination destroys many tuberculous bacilli, and centrifugation often is not possible in resource-poor settings. We therefore assessed the performance of Mycobacterium tuberculosis culture with unprocessed samples plated directly by using tuberculosis-selective media and compared this procedure to conventional culture using centrifuge decontamination. Quadruplicate aliquots of strain H37RV were cultured in 7H9 broth with and without selective antimicrobials and after centrifuge decontamination. The subsequent comparison was made with 715 sputum samples. Split paired sputum samples were cultured conventionally with centrifuge decontamination and by direct culture in tuberculosis-selective media containing antibiotics. Centrifuge decontamination reduced tuberculosis H37RV colonies by 78% (P < 0.001), whereas direct culture in tuberculosis-selective media had no inhibitory effect. Similarly, in sputum cultures that were not overgrown by contaminants, conventional culture yielded fewer tuberculosis colonies than direct culture (P < 0.001). However, the sensitivity of conventional culture was greater than that of direct culture, because samples were less affected by contamination. Thus, of the 340 sputum samples that were tuberculosis culture positive, conventional culture detected 97%, whereas direct culture detected 81% (P < 0.001). Conventional and direct cultures both took a median of 8.0 days to diagnose tuberculosis (P = 0.8). In those direct cultures that detected drug resistance or susceptibility, there was a 97% agreement with the results of conventional culture (Kappa agreement statistic, 0.84; P < 0.001). Direct culture is a simple, low-technology, and rapid technique for diagnosing tuberculosis and determining drug susceptibility. Compared to that of conventional culture, direct culture has reduced sensitivity because of bacterial overgrowth, but in basic laboratories this deficit may be outweighed by the ease of use
    corecore