21 research outputs found

    Disseminated cancer cells detected by immunocytology in lymph nodes of NSCLC patients are highly prognostic and undergo parallel molecular evolution

    Get PDF
    Abstract In melanoma, immunocytology (IC) after sentinel lymph node disaggregation not only enables better quantification of disseminated cancer cells (DCCs) than routine histopathology (HP) but also provides a unique opportunity to detect, isolate, and analyse these earliest harbingers of metachronous metastasis. Here, we explored lymph node IC in non‐small cell lung cancer (NSCLC). For 122 NSCLC patients, 220 lymph nodes (LNs) were split in half and prepared for IC and HP. When both methods were compared, IC identified 22% positive patients as opposed to 4.5% by HP, revealing a much higher sensitivity of IC (p < 0.001). Assessment of all available 2,952 LNs of the same patients by HP uncovered additional patients escaping detection of lymphatic tumour spread by IC alone, consistent with the concept of skip metastasis. A combined lymph node status of IC and complete HP on a larger cohort of patients outperformed all risk factors in multivariable analysis for prognosis (p < 0.001; RR = 2.290; CI 1.407–3.728). Moreover, isolation of DCCs and single‐cell molecular characterization revealed that (1) LN‐DCCs differ from primary tumours in terms of copy number alterations and selected mutations and (2) critical alterations are acquired during colony formation within LNs. We conclude that LN‐IC in NSCLC patients when combined with HP improves diagnostic precision, has the potential to reduce total workload, and facilitates molecular characterization of lymphatically spread cancer cells, which may become key for the selection and development of novel systemic therapies. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland

    Disseminated cancer cells detected by immunocytology in lymph nodes of NSCLC patients are highly prognostic and undergo parallel molecular evolution

    Get PDF
    In melanoma, immunocytology (IC) after sentinel lymph node disaggregation not only enables better quantification of disseminated cancer cells (DCCs) than routine histopathology (HP) but also provides a unique opportunity to detect, isolate, and analyse these earliest harbingers of metachronous metastasis. Here, we explored lymph node IC in non-small cell lung cancer (NSCLC). For 122 NSCLC patients, 220 lymph nodes (LNs) were split in half and prepared for IC and HP. When both methods were compared, IC identified 22% positive patients as opposed to 4.5% by HP, revealing a much higher sensitivity of IC (p < 0.001). Assessment of all available 2,952 LNs of the same patients by HP uncovered additional patients escaping detection of lymphatic tumour spread by IC alone, consistent with the concept of skip metastasis. A combined lymph node status of IC and complete HP on a larger cohort of patients outperformed all risk factors in multivariable analysis for prognosis (p < 0.001; RR = 2.290; CI 1.407–3.728). Moreover, isolation of DCCs and single-cell molecular characterization revealed that (1) LN-DCCs differ from primary tumours in terms of copy number alterations and selected mutations and (2) critical alterations are acquired during colony formation within LNs. We conclude that LN-IC in NSCLC patients when combined with HP improves diagnostic precision, has the potential to reduce total workload, and facilitates molecular characterization of lymphatically spread cancer cells, which may become key for the selection and development of novel systemic therapies. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland

    Transcriptome of Aphanomyces euteiches: New Oomycete Putative Pathogenicity Factors and Metabolic Pathways

    Get PDF
    Aphanomyces euteiches is an oomycete pathogen that causes seedling blight and root rot of legumes, such as alfalfa and pea. The genus Aphanomyces is phylogenically distinct from well-studied oomycetes such as Phytophthora sp., and contains species pathogenic on plants and aquatic animals. To provide the first foray into gene diversity of A. euteiches, two cDNA libraries were constructed using mRNA extracted from mycelium grown in an artificial liquid medium or in contact to plant roots. A unigene set of 7,977 sequences was obtained from 18,864 high-quality expressed sequenced tags (ESTs) and characterized for potential functions. Comparisons with oomycete proteomes revealed major differences between the gene content of A. euteiches and those of Phytophthora species, leading to the identification of biosynthetic pathways absent in Phytophthora, of new putative pathogenicity genes and of expansion of gene families encoding extracellular proteins, notably different classes of proteases. Among the genes specific of A. euteiches are members of a new family of extracellular proteins putatively involved in adhesion, containing up to four protein domains similar to fungal cellulose binding domains. Comparison of A. euteiches sequences with proteomes of fully sequenced eukaryotic pathogens, including fungi, apicomplexa and trypanosomatids, allowed the identification of A. euteiches genes with close orthologs in these microorganisms but absent in other oomycetes sequenced so far, notably transporters and non-ribosomal peptide synthetases, and suggests the presence of a defense mechanism against oxidative stress which was initially characterized in the pathogenic trypanosomatids

    Production of monoclonal antibodies against peripheral-vesicle proteins in zoospores of Phytophthora nicotianae

    No full text
    A coimmunisation protocol using microsomal fractions from Phytophthora nicotianae cells has enhanced the production of mono- clonal antibodies directed towards proteins produced during asexual sporulation. Over 40% of the antibodies targeted three categories of zoospore peripheral vesicles. Five antibodies label the contents of dorsal vesicles, with three of these reacting with two P. nicotianae polypeptides with a relative molecular mass of approximately 100 kDa. Two antibodies label the contents of large peripheral vesicles and react with two very high-molecular-weight polypeptides in extracts of P. nicotianae cells. These antibodies cross-react with the contents of large peripheral vesicles in P. cinnamomi zoospores. Ten antibodies label the contents of P. nicotianae zoospore ventral vesicles and react with a single polypeptide with a relative molecular mass of 230 kDa. A number of these antibodies against the contents of ventral vesicles in P. nicotianae zoospores cross-react with ventral-vesicle proteins in P. cinnamomi cells in immunofluorescence and immunoblot assays. The study illustrates the value of the coimmunisation protocol and has produced antibodies that could be instrumental in the cloning of genes encoding peripheral-vesicle proteins

    Mapping of avirulence genes in Phytophthora infestans with amplified fragment length polymorphism markers selected by bulked segregant analysis

    No full text
    In this study we investigated the genetic control of avirulence in the diploid oomycete pathogen Phytophthora infestans, the causal agent of late blight on potato. The dominant avirulence (Avr) genes matched six race-specific resistance genes introgressed in potato from a wild Solanum species. AFLP markers linked to Avr genes were selected by bulked segregant analysis and used to construct two high-density linkage maps, one containing Avr4 (located on linkage group A2-a) and the other containing a cluster of three tightly linked genes, Avr3, Avr10, and Avr11 (located on linkage group VIII). Bulked segregant analysis also resulted in a marker linked to Avr1 and this allowed positioning of Avr1 on linkage group IV. No bulked segregant analysis was performed for Avr2, but linkage to a set of random markers placed Avr2 on linkage group VI. Of the six Avr genes, five were located on the most distal part of the linkage group, possibly close to the telomere. The high-density mapping was initiated to facilitate future positional cloning of P. infestans Avr genes

    Mapping of avirulence genes in Phytophthora infestans with amplified fragment length polymorphism markers selected by bulked segregant analysis.

    No full text
    In this study we investigated the genetic control of avirulence in the diploid oomycete pathogen Phytophthora infestans, the causal agent of late blight on potato. The dominant avirulence (Avr) genes matched six race-specific resistance genes introgressed in potato from a wild Solanum species. AFLP markers linked to Avr genes were selected by bulked segregant analysis and used to construct two high-density linkage maps, one containing Avr4 (located on linkage group A2-a) and the other containing a cluster of three tightly linked genes, Avr3, Avr10, and Avr11 (located on linkage group VIII). Bulked segregant analysis also resulted in a marker linked to Avr1 and this allowed positioning of Avr1 on linkage group IV. No bulked segregant analysis was performed for Avr2, but linkage to a set of random markers placed Avr2 on linkage group VI. Of the six Avr genes, five were located on the most distal part of the linkage group, possibly close to the telomere. The high-density mapping was initiated to facilitate future positional cloning of P. infestans Avr genes

    EpCAM-positive disseminated cancer cells in bone marrow impact on survival of early-stage NSCLC patients

    Get PDF
    Introduction Detection of disseminated cancer cells (DCC) in bone marrow (BM) of patients with early-stage NSCLC has been associated with poor outcome. However, the phenotype, and hence relevant therapy targets, of DCCs in BM are unknown. We therefore compared a classical pan-Cytokeratin (CK) antibody for DCC detection with an anti-EpCAM antibody that may also detect more stem-like cells and tested whether assay positivity impacts on the survival of NSCLC patients. Materials and methods We prospectively collected BM aspirates from 104 non-metastasized NSCLC patients that underwent potentially curative tumor resection from 2011 to 2016 at the Department of Thoracic Surgery of the University Hospital and Hospital Barmherzige BrĂŒder in Regensburg. DCCs were detected by staining with the pan anti-CK antibody A45-B/B3 and the anti-EpCAM antibody HEA-125. We analyzed the association between detection of DCCs and clinicopathological characteristic and patient outcome. Results CK-positive and EpCAM-positive DCCs were detected in 45.2% and 52.9% of patients, respectively. Correlation between the two markers was low and neither of them was associated with sex, age, histology, T or N classification, resection status, grading or smoking habit. No significant association with tumor specific survival (TSS) and progression-free survival (PFS) was observed in patients with CK-positive DCCs. In contrast, detection of EpCAM-positive DCCs significantly correlated with reduced PFS (P=0.017) and TSS (P=0.017) and remained an independent prognostic variable for PFS and TSS upon multivariate testing (hazard ratio: 7.506 and 3.551, respectively). Detection of EpCAM-positive DCCs was the only prognostic marker for PFS. Conclusions EpCAM-positive, but not CK-positive DCCs in BM predict reduced PFS and TSS. This finding suggests that EpCAM-positive DCCs in the BM comprise metastatic founder cells necessitating their in-depth molecular analysis for detection of novel therapy targets

    Ex vivo expansion of lung cancer‐derived disseminated cancer cells from lymph nodes identifies cells associated with metastatic progression

    Get PDF
    The cellular basis of the apparent aggressiveness in lung cancer is poorly understood but likely associated with functional or molecular features of disseminated cancer cells (DCCs). DCCs from epithelial cancers are mostly detected by antibodies directed against histogenetic markers such as cytokeratin or EpCAM. It has been argued that marker-negative metastatic founder cells might escape detection. We therefore used ex vivo sphere formation for functional detection of candidate metastasis founders. We generated cell suspensions from 199 LN samples of 131 lung cancer patients and placed them into non-adherent cell culture. Sphere formation was associated with detection of DCCs using EpCAM immunocytology and with significantly poorer prognosis. The prognostic impact of sphere formation was strongly associated with high numbers of EpCAM-positive DCCs and aberrant genotypes of expanded spheres. We also noted sphere formation in patients with no evidence of lymphatic spread, however such spheres showed infrequent expression of signature genes associated with spheres from EpCAM-positive samples and displayed neither typical lung cancer mutations (KRAS, TP53, ERBB1) nor copy number variations, but might be linked to disease progression >5 years post curative surgery. We conclude that EpCAM identifies relevant disease-driving DCCs, that such cells can be expanded for model generation and that further research is needed to clarify the functional and prognostic role of rare EpCAM-negative sphere forming cells
    corecore