1,564 research outputs found
4D Tropospheric Tomography using GPS Estimated Slant Delays
Tomographic techniques are successfully applied to obtain 4D images of the
tropospheric refractivity in a local dense network. In the lower atmosphere
both the small height and time scales and the non-dispersive nature of
tropospheric delays require a more careful analysis of the data. We show how
GPS data is processed to obtain the tropospheric slant delays using the
GIPSY-OASIS II software and define the concept of pseudo-wet delays, which will
be the observables in the tomographic software. We then discuss the inverse
problem in the 3D stochastic tomography, using simulated refractivity fields to
test the system and the impact of noise. Finally, we use data from the Kilauea
network in Hawaii and a local 4x4x41-voxel grid on a region of 400 Km and
15 Km in height to produce 4D refractivity fields. Results are compared with
ECMWF forecast.Comment: 9 pages, 6 figures (2 color
Neutrino Masses and GUT Baryogenesis
We reconsider the GUT-baryogenesis mechanism for generating the baryon
asymmetry of the Universe. The baryon asymmetry is produced by the out of
equilibrium decay of coloured Higgs bosons at the GUT scale, conserving B-L. If
neutrinos are Majorana particles, lepton number violating interactions erase
the lepton number excess, but part of the baryon asymmetry may be preserved,
provided those interactions are not in thermal equilibrium when the sphaleron
processes become effective, at . We analyse whether this
mechanism for baryogenesis is feasible in a variety of GUT models of fermion
masses proposed in the literature, based on horizontal symmetries.Comment: Talk presented at AHEP2003, Valencia, Spain, October 200
Can new generations explain neutrino masses?
In this talk we explore the possibility that the smallness of the observed
neutrino masses is naturally understood in a modified version of the standard
model with N extra generations of fermions and N right-handed neutrinos, in
which light neutrino masses are generated at two loops. We find that with N = 1
it is not possible to fit the observed spectrum of masses and mixings while
with N = 2 it is. Within this extension, we analyse the parameters which are
allowed and the possible phenomenological signals of the model in future
experiments. Contribution to the proceedings of Les Rencontres de Moriond EW
2011, Young Scientist Forum
Zenith total delay study of a mesoscale convective system : GPS observations and fine-scale modelling
Zenith Total Delay (ZTD) observations and model calculations are used to analyze a mesoscale convective system which yielded a large amount of precipitation over a short period of time in the north-western Mediterranean. ZTD observations are derived from the GPS signal delay whereas the ZTD model results are calculated by means of the MM5 mesoscale model. Large values of the root-mean-square (rms) differences between the ZTD derived from the observations and the modeling are found for the maximum activity of the mesoscale convective system. It appears that the average bias between observations and modeling results is slightly affected (20%) by the passage of the storm system which is associated to the water vapor variability of the atmosphere. We have analyzed the ZTD differences in terms of the two components: the Zenith Hydrostatic Delay (ZHD) and the Zenith Wet Delay (ZWD). The hydrostatic error is mainly caused by the differences between the elevation of the GPS stations and the model topography and is reduced when using a more accurate topography data set. We propose a correction for this error assuming hydrostatic equilibrium. The remaining average ZTD difference is associated to the ZWD and is mainly generated by inaccuracies of the mesoscale model to predict the water vapor content during the rainfall event
C2MS: Dynamic Monitoring and Management of Cloud Infrastructures
Server clustering is a common design principle employed by many organisations
who require high availability, scalability and easier management of their
infrastructure. Servers are typically clustered according to the service they
provide whether it be the application(s) installed, the role of the server or
server accessibility for example. In order to optimize performance, manage load
and maintain availability, servers may migrate from one cluster group to
another making it difficult for server monitoring tools to continuously monitor
these dynamically changing groups. Server monitoring tools are usually
statically configured and with any change of group membership requires manual
reconfiguration; an unreasonable task to undertake on large-scale cloud
infrastructures.
In this paper we present the Cloudlet Control and Management System (C2MS); a
system for monitoring and controlling dynamic groups of physical or virtual
servers within cloud infrastructures. The C2MS extends Ganglia - an open source
scalable system performance monitoring tool - by allowing system administrators
to define, monitor and modify server groups without the need for server
reconfiguration. In turn administrators can easily monitor group and individual
server metrics on large-scale dynamic cloud infrastructures where roles of
servers may change frequently. Furthermore, we complement group monitoring with
a control element allowing administrator-specified actions to be performed over
servers within service groups as well as introduce further customized
monitoring metrics. This paper outlines the design, implementation and
evaluation of the C2MS.Comment: Proceedings of the The 5th IEEE International Conference on Cloud
Computing Technology and Science (CloudCom 2013), 8 page
4D tropospheric tomography using GPS slant wet delays
International audienceTomographic techniques are successfully applied to obtain 4D images of the tropospheric refractivity in a local dense network of global positioning system (GPS) receivers. We show here how GPS data are processed to obtain the tropospheric slant wet delays and discuss the validity of the processing. These slant wet delays are the observables in the tomographic processing. We then discuss the inverse problem in 4D tropospheric tomography making extensive use of simulations to test the system and define the resolution and the impact of noise. Finally, we use data from the Kilauea network in Hawaii for February 1, 1997, and a local 4×4×40 voxel grid on a region of 400 km2 and 15 km in height to produce the corresponding 4D wet refractivity fields, which are then validated using forecast analysis from the European Center for Medium Range Weather Forecast (ECMWF). We conclude that tomographic techniques can be used to monitor the troposphere in time and space
- …