86 research outputs found

    Basement membrane proteins as a substrate for efficient Trypanosoma brucei differentiation in vitro

    Get PDF
    The ability to reproduce the developmental events of trypanosomes that occur in their mammalian host in vitro offers significant potential to assist in understanding of the underlying biology of the process. For example, the transition from bloodstream slender to bloodstream stumpy forms is a quorum-sensing response to the parasite-derived peptidase digestion products of environmental proteins. As an abundant physiological substrate in vivo, we studied the ability of a basement membrane matrix enriched gel (BME) in the culture medium to support differentiation of pleomorphic Trypanosoma brucei to stumpy forms. BME comprises extracellular matrix proteins, which are among the most abundant proteins found in connective tissues in mammals and known substrates of parasite-released peptidases. We previously showed that two of these released peptidases are involved in generating a signal that promotes slender-to-stumpy differentiation. Here, we tested the ability of basement membrane extract to enhance parasite differentiation through its provision of suitable substrates to generate the quorum sensing signal, namely oligopeptides. Our results show that when grown in the presence of BME, T. brucei pleomorphic cells arrest at the G0/1 phase of the cell cycle and express the differentiation marker PAD1, the response being restricted to differentiation-competent parasites. Further, the stumpy forms generated in BME medium are able to efficiently proceed onto the next life cycle stage in vitro, procyclic forms, when incubated with cis-aconitate, further validating the in vitro BME differentiation system. Hence, BME provides a suitable in vitro substrate able to accurately recapitulate physiological parasite differentiation without the use of experimental animals

    A breakthrough on Amanita phalloides poisoning: an effective antidotal effect by polymyxin B

    Get PDF
    Amanita phalloides is responsible for more than 90 % of mushroom-related fatalities, and no effective antidote is available. a-Amanitin, the main toxin of A. phalloides, inhibits RNA polymerase II (RNAP II), causing hepatic and kidney failure. In silico studies included docking and molecular dynamics simulation coupled to molecular mechanics with generalized Born and surface area method energy decomposition on RNAP II. They were performed with a clinical drug that shares chemical similarities to a-amanitin, polymyxin B. The results show that polymyxin B potentially binds to RNAP II in the same interface of a-amanitin, preventing the toxin from binding to RNAP II. In vivo, the inhibition of the mRNA transcripts elicited by a-amanitin was efficiently reverted by polymyxin B in the kidneys. Moreover, polymyxin B significantly decreased the hepatic and renal a-amanitin-induced injury as seen by the histology and hepatic aminotransferases plasma data. In the survival assay, all animals exposed to a-amanitin died within 5 days, whereas 50 % survived up to 30 days when polymyxin B was administered 4, 8, and 12 h post-a-amanitin. Moreover, a single dose of polymyxin B administered concomitantly with a-amanitin was able to guarantee 100 % survival. Polymyxin B protects RNAP II from inactivation leading to an effective prevention of organ damage and increasing survival in a-amanitin-treated animals. The present use of clinically relevant concentrations of an already human-use-approved drug prompts the use of polymyxin B as an antidote for A. phalloides poisoning in humans.Juliana Garcia, Vera Marisa Costa, Ricardo Dinis-Oliveira and Ricardo Silvestre thank FCT-Foundation for Science and Technology-for their PhD grant (SFRH/BD/74979/2010), Post-doc grants (SFRH/BPD/63746/2009 and SFRH/BPD/110001/2015) and Investigator grants (IF/01147/2013) and (IF/00021/2014), respectively. This work was supported by the Fundacao para a Ciencia e Tecnologia (FCT) - project PTDC/DTPFTO/4973/2014 - and the European Union (FEDER funds through COMPETE) and National Funds (FCT, Fundacao para a Ciencia e Tecnologia) through project Pest-C/EQB/LA0006/2013

    Transcriptomes of <i>Trypanosoma brucei</i> rhodesiense from sleeping sickness patients, rodents and culture:Effects of strain, growth conditions and RNA preparation methods

    Get PDF
    All of our current knowledge of African trypanosome metabolism is based on results from trypanosomes grown in culture or in rodents. Drugs against sleeping sickness must however treat trypanosomes in humans. We here compare the transcriptomes of Trypanosoma brucei rhodesiense from the blood and cerebrospinal fluid of human patients with those of trypanosomes from culture and rodents. The data were aligned and analysed using new user-friendly applications designed for Kinetoplastid RNA-Seq data. The transcriptomes of trypanosomes from human blood and cerebrospinal fluid did not predict major metabolic differences that might affect drug susceptibility. Usefully, there were relatively few differences between the transcriptomes of trypanosomes from patients and those of similar trypanosomes grown in rats. Transcriptomes of monomorphic laboratory-adapted parasites grown in in vitro culture closely resembled those of the human parasites, but some differences were seen. In poly(A)-selected mRNA transcriptomes, mRNAs encoding some protein kinases and RNA-binding proteins were under-represented relative to mRNA that had not been poly(A) selected; further investigation revealed that the selection tends to result in loss of longer mRNAs

    How do trypanosomes change gene expression in response to the environment?

    Full text link

    A Pre-clinical Animal Model of Trypanosoma brucei Infection Demonstrating Cardiac Dysfunction

    Get PDF
    African trypanosomiasis (AT), caused by Trypanosoma brucei species, results in both neurological and cardiac dysfunction and can be fatal if untreated. Research on the pathogenesis and treatment of the disease has centred to date on the characteristic neurological symptoms, whereas cardiac dysfunction (e.g. ventricular arrhythmias) in AT remains largely unstudied. Animal models of AT demonstrating cardiac dysfunction similar to that described in field cases of AT are critically required to transform our understanding of AT-induced cardiac pathophysiology and identify future treatment strategies. We have previously shown that T. brucei can interact with heart muscle cells (cardiomyocytes) to induce ventricular arrhythmias in ex vivo adult rat hearts. However, it is unknown whether the arrhythmias observed ex vivo are also present during in vivo infection in experimental animal models. Here we show for the first time the characterisation of ventricular arrhythmias in vivo in two animal models of AT infection using electrocardiographic (ECG) monitoring. The first model utilised a commonly used monomorphic laboratory strain, Trypanosoma brucei brucei Lister 427, whilst the second model used a pleomorphic laboratory strain, T. b. brucei TREU 927, which demonstrates a similar chronic infection profile to clinical cases. The frequency of ventricular arrhythmias and heart rate (HR) was significantly increased at the endpoint of infection in the TREU 927 infection model, but not in the Lister 427 infection model. At the end of infection, hearts from both models were isolated and Langendorff perfused ex vivo with increasing concentrations of the β-adrenergic agonist isoproterenol (ISO). Interestingly, the increased frequency of arrhythmias observed in vivo in the TREU 927 infection model was lost upon isolation of the heart ex vivo, but re-emerged with the addition of ISO. Our results demonstrate that TREU 927 infection modifies the substrate of the myocardium in such a way as to increase the propensity for ventricular arrhythmias in response to a circulating factor in vivo or β-adrenergic stimulation ex vivo. The TREU 927 infection model provides a new opportunity to accelerate our understanding of AT-related cardiac pathophysiology and importantly has the required sensitivity to monitor adverse cardiac-related electrical dysfunction when testing new therapeutic treatments for AT

    Comparative genomics of the tardigrades <i>Hypsibius dujardini</i> and <i>Ramazzottius varieornatus</i>

    Get PDF
    Tardigrada, a phylum of meiofaunal organisms, have been at the center of discussions of the evolution of Metazoa, the biology of survival in extreme environments, and the role of horizontal gene transfer in animal evolution. Tardigrada are placed as sisters to Arthropoda and Onychophora (velvet worms) in the superphylum Panarthropoda by morphological analyses, but many molecular phylogenies fail to recover this relationship. This tension between molecular and morphological understanding may be very revealing of the mode and patterns of evolution of major groups. Limnoterrestrial tardigrades display extreme cryptobiotic abilities, including anhydrobiosis and cryobiosis, as do bdelloid rotifers, nematodes, and other animals of the water film. These extremophile behaviors challenge understanding of normal, aqueous physiology: how does a multicellular organism avoid lethal cellular collapse in the absence of liquid water? Meiofaunal species have been reported to have elevated levels of horizontal gene transfer (HGT) events, but how important this is in evolution, and particularly in the evolution of extremophile physiology, is unclear. To address these questions, we resequenced and reassembled the genome of H. dujardini, a limnoterrestrial tardigrade that can undergo anhydrobiosis only after extensive pre-exposure to drying conditions, and compared it to the genome of R. varieornatus, a related species with tolerance to rapid desiccation. The 2 species had contrasting gene expression responses to anhydrobiosis, with major transcriptional change in H. dujardini but limited regulation in R. varieornatus. We identified few horizontally transferred genes, but some of these were shown to be involved in entry into anhydrobiosis. Whole-genome molecular phylogenies supported a Tardigrada+Nematoda relationship over Tardigrada+Arthropoda, but rare genomic changes tended to support Tardigrada+Arthropoda

    Freeze tolerance, supercooling points and ice formation: comparative studies on the subzero temperature survival of limno-terrestrial tardigrades

    No full text
    Many limno-terrestrial tardigrades live in unstable habitats where they experience extreme environmental conditions such as drought, heat and subzero temperatures. Although their stress tolerance is often related only to the anhydrobiotic state, tardigrades can also be exposed to great daily temperature fluctuations without dehydration. Survival of subzero temperatures in an active state requires either the ability to tolerate the freezing of body water or mechanisms to decrease the freezing point. Considering freeze tolerance in tardigrades as a general feature, we studied the survival rate of nine tardigrade species originating from polar, temperate and tropical regions by cooling them at rates of 9, 7, 5, 3 and 1 degrees Ch(-1) down to -30 degrees C then returning them to room temperature at 10 degrees Ch(-1). The resulting moderate survival after fast and slow cooling rates and low survival after intermediate cooling rates may indicate the influence of a physical effect during fast cooling and the possibility that they are able to synthesize cryoprotectants during slow cooling. Differential scanning calorimetry of starved, fed and cold acclimatized individuals showed no intraspecific significant differences in supercooling points and ice formation. Although this might suggest that metabolic and biochemical preparation are non-essential prior to subzero temperature exposure, the increased survival rate with slower cooling rates gives evidence that tardigrades still use some kind of mechanism to protect their cellular structure from freezing injury without influencing the freezing temperature. These results expand our current understanding of freeze tolerance in tardigrades and will lead to a better understanding of their ability to survive subzero temperature conditions

    High-temperature tolerance in anhydrobiotic tardigrades is limited by glass transition

    No full text
    Survival in microhabitats that experience extreme fluctuations in water availability and temperature requires special adaptations. To withstand such environmental conditions, tardigrades, as well as some nematodes and rotifers, enter a completely desiccated state known as anhydrobiosis. We examined the effects of high temperatures on fully desiccated (anhydrobiotic) tardigrades. Nine species from the classes Heterotardigrada and Eutardigrada were exposed to temperatures of up to 110 degrees C for 1 h. Exposure to temperatures of up to 80 degrees C resulted in a moderate decrease in survival. Exposure to temperatures above this resulted in a sharp decrease in survival, with no animals of the families Macrobiotidae and Echiniscidae surviving 100 degrees C. However, Milnesium tardigradum (Milnesidae) showed survival of >90% after exposure to 100 degrees C; temperatures above this resulted in a steep decrease in survival. Vitrification is assumed to play a major role in the survival of anhydrobiotic organisms during exposure to extreme temperatures, and consequently, the glass-transition temperature (T-g) is critical to high-temperature tolerance. In this study, we provide the first evidence of the presence of a glass transition during heating in an anhydrobiotic tardigrade through the use of differential scanning calorimetry
    corecore