327 research outputs found
Injectable polypeptide hydrogels via methionine modification for neural stem cell delivery.
Injectable hydrogels with tunable physiochemical and biological properties are potential tools for improving neural stem/progenitor cell (NSPC) transplantation to treat central nervous system (CNS) injury and disease. Here, we developed injectable diblock copolypeptide hydrogels (DCH) for NSPC transplantation that contain hydrophilic segments of modified l-methionine (Met). Multiple Met-based DCH were fabricated by post-polymerization modification of Met to various functional derivatives, and incorporation of different amino acid comonomers into hydrophilic segments. Met-based DCH assembled into self-healing hydrogels with concentration and composition dependent mechanical properties. Mechanical properties of non-ionic Met-sulfoxide formulations (DCHMO) were stable across diverse aqueous media while cationic formulations showed salt ion dependent stiffness reduction. Murine NSPC survival in DCHMO was equivalent to that of standard culture conditions, and sulfoxide functionality imparted cell non-fouling character. Within serum rich environments in vitro, DCHMO was superior at preserving NSPC stemness and multipotency compared to cell adhesive materials. NSPC in DCHMO injected into uninjured forebrain remained local and, after 4 weeks, exhibited an immature astroglial phenotype that integrated with host neural tissue and acted as cellular substrates that supported growth of host-derived axons. These findings demonstrate that Met-based DCH are suitable vehicles for further study of NSPC transplantation in CNS injury and disease models
Extracción de bases de reglas simples y lingüísticamente interpretables
Comunicación presentada al "XIII ESTYLF'06" celebrado en Ciudad Real del 20 al 22 de Septiembre de 2006.Este artículo presenta una técnica basada en la lógica difusa para extraer bases de reglas a partir de datos numéricos. Permite obtener bases de reglas interpretables lingüísticamente a la vez que simples en cuanto a número de reglas, sencillez en las partes antecedentes y consecuentes y facilidad de implementación hardware/software. Los pasos más significativos de esta técnica son los siguientes: (1) extracción de la base de reglas empleando particiones granulares de las variables del problema, (2) ajuste de las funciones de pertenencia para las variables de salida y posterior simplificación, (3) simplificación tabular de la base de reglas y (4) simplificación
de las funciones de pertenencia para las
variables de entrada. La técnica puede aplicarse de forma automática mediante las herramientas de CAD integradas en el entorno Xfuzzy 3. Se incluye un ejemplo de aplicación en robótica móvil para ilustrar las ventajas de la técnica propuesta.Peer reviewe
Исследование процесса сушки продуктов обогащения в вихревых аппаратах
Проаналізовані особливості кінематики високотемпературних теплоносіїв, які використовують при сушці вологих концентратів, на основі чого була складена математична модель руху гетерогенного потоку в вихровому апараті та приведені кількісні показники її рішення.Проанализированы особенности кинематики высокотемпературных теплоносителей, используемых при сушке влажных концентратов, на основе чего была составлена математическая модель движения гетерогенного потока в вихревом аппарате и приведены количественные показатели ее решения
Allelic variants between mouse substrains BALB/cJ and BALB/cByJ influence mononuclear cardiomyocyte composition and cardiomyocyte nuclear ploidy.
Most mouse cardiomyocytes (CMs) become multinucleated shortly after birth via endoreplication and interrupted mitosis, which persists through adulthood. The very closely related inbred mouse strains BALB/cJ and BALB/cByJ differ substantially (6.6% vs. 14.3%) in adult mononuclear CM level. This difference is the likely outcome of a single X-linked polymorphic gene that functions in a CM-nonautonomous manner, and for which the BALB/cByJ allele is recessive to that of BALB/cJ. From whole exome sequence we identified two new X-linked protein coding variants that arose de novo in BALB/cByJ, in the genes Gdi1 (R276C) and Irs4 (L683F), but show that neither affects mononuclear CM level individually. No BALB/cJ-specific X-linked protein coding variants were found, implicating instead a variant that influences gene expression rather than encoded protein function. A substantially higher percentage of mononuclear CMs in BALB/cByJ are tetraploid (66.7% vs. 37.6% in BALB/cJ), such that the overall level of mononuclear diploid CMs between the two strains is similar. The difference in nuclear ploidy is the likely result of an autosomal polymorphism, for which the BALB/cByJ allele is recessive to that of BALB/cJ. The X-linked and autosomal genes independently influence mitosis such that their phenotypic consequences can be combined or segregated by appropriate breeding, implying distinct functions in karyokinesis and cytokinesis
Assessment of methods to reduce the energy consumption of food cold stores
Energy is a major cost in the operation of food cold stores. Work has shown that considerable energy savings can be achieved in cold stores. Results from 38 cold store audits carried out across Europe are presented. Substantial savings could be achieved if operation of cold storage facilities were optimised in terms of heat loads on the rooms and the operation of the refrigeration system. Many improvements identified were low in cost (improved door protection, defrost optimisation, control settings and repairs). In large stores (>100 m3) most improvements identified were cost effective and had short payback times, whereas in small stores there were fewer energy saving options that had realistic payback times. The potential for large energy savings of at minimum 8% and at maximum 72% were identified by optimising usage of stores, repairing current equipment and by retrofitting of energy efficient equipment. Often these improvements had short payback times of less than 1 year. In each facility the options to reduce energy consumption varied. This indicated that to fully identify the maximum energy savings, recommendations need to be specific to a particular plant. General recommendations cannot fully exploit the energy savings available and therefore to maximise energy savings it is essential to monitor and analyse data from each facility. © 2013 Elsevier Ltd. All rights reserved
Natamycin sequesters ergosterol and interferes with substrate transport by the lysine transporter Lyp1 from yeast
Natamycin is a polyene macrolide, widely employed to treat fungal keratitis and other yeast infections as well as to protect food products against fungal molds. In contrast to other polyene macrolides, such as nystatin or amphotericin B, natamycin does not form pores in yeast membranes, and its mode of action is not well understood. Here, we have employed a variety of spectroscopic methods, computational modeling, and membrane reconstitution to study the molecular interactions of natamycin underlying its antifungal activity. We find that natamycin forms aggregates in an aqueous solution with strongly altered optical properties compared to monomeric natamycin. Interaction of natamycin with model membranes results in a concentration-dependent fluorescence increase which is more pronounced for ergosterol- compared to cholesterol-containing membranes up to 20 mol% sterol. Evidence for formation of specific ergosterol-natamycin complexes in the bilayer is provided. Using nuclear magnetic resonance (NMR) and electron spin resonance (ESR) spectroscopy, we find that natamycin sequesters sterols, thereby interfering with their well-known ability to order acyl chains in lipid bilayers. This effect is more pronounced for membranes containing the sterol of fungi, ergosterol, compared to those containing mammalian cholesterol. Natamycin interferes with ergosterol-dependent transport of lysine by the yeast transporter Lyp1, which we propose to be due to the sequestering of ergosterol, a mechanism that also affects other plasma membrane proteins. Our results provide a mechanistic explanation for the selective antifungal activity of natamycin, which can set the stage for rational design of novel polyenes in the future
The variational quantum eigensolver self-consistent field method within a polarizable embedded framework
We formulate and implement the Variational Quantum Eigensolver Self
Consistent Field (VQE-SCF) algorithm in combination with polarizable embedding
(PE), thereby extending PE to the regime of quantum computing. We test the
resulting algorithm, PE-VQE-SCF, on quantum simulators and demonstrate that the
computational stress on the quantum device is only slightly increased in terms
of gate counts compared to regular VQE-SCF. On the other hand, no increase in
shot noise was observed. We illustrate how PE-VQE-SCF may lead to the modeling
of real chemical systems using a simulation of the reaction barrier of the
Diels-Alder reaction between furan and ethene as an example.Comment: 19 pages, 5 figures, submitted to Journal of Chemical Physic
Lesion environments direct transplanted neural progenitors towards a wound repair astroglial phenotype in mice.
Neural progenitor cells (NPC) represent potential cell transplantation therapies for CNS injuries. To understand how lesion environments influence transplanted NPC fate in vivo, we derived NPC expressing a ribosomal protein-hemagglutinin tag (RiboTag) for transcriptional profiling of transplanted NPC. Here, we show that NPC grafted into uninjured mouse CNS generate cells that are transcriptionally similar to healthy astrocytes and oligodendrocyte lineages. In striking contrast, NPC transplanted into subacute CNS lesions after stroke or spinal cord injury in mice generate cells that share transcriptional, morphological and functional features with newly proliferated host astroglia that restrict inflammation and fibrosis and isolate lesions from adjacent viable neural tissue. Our findings reveal overlapping differentiation potentials of grafted NPC and proliferating host astrocytes; and show that in the absence of other interventions, non-cell autonomous cues in subacute CNS lesions direct the differentiation of grafted NPC towards a naturally occurring wound repair astroglial phenotype
Resolution of structural variation in diverse mouse genomes reveals chromatin remodeling due to transposable elements.
Diverse inbred mouse strains are important biomedical research models, yet genome characterization of many strains is fundamentally lacking in comparison with humans. In particular, catalogs of structural vari- ants (SVs) (variants R 50 bp) are incomplete, limiting the discovery of causative alleles for phenotypic vari- ation. Here, we resolve genome-wide SVs in 20 genetically distinct inbred mice with long-read sequencing. We report 413,758 site-specific SVs affecting 13% (356 Mbp) of the mouse reference assembly, including 510 previously unannotated coding variants. We substantially improve the Mus musculus transposable element (TE) callset, and we find that TEs comprise 39% of SVs and account for 75% of altered bases. We further utilize this callset to investigate how TE heterogeneity affects mouse embryonic stem cells and find multiple TE classes that influence chromatin accessibility. Our work provides a comprehensive analysis of SVs found in diverse mouse genomes and illustrates the role of TEs in epigenetic differences
Genetic dissection of the pluripotent proteome through multi-omics data integration.
Genetic background drives phenotypic variability in pluripotent stem cells (PSCs). Most studies to date have used transcript abundance as the primary molecular readout of cell state in PSCs. We performed a comprehensive proteogenomics analysis of 190 genetically diverse mouse embryonic stem cell (mESC) lines. The quantitative proteome is highly variable across lines, and we identified pluripotency-associated pathways that were differentially activated in the proteomics data that were not evident in transcriptome data from the same lines. Integration of protein abundance to transcript levels and chromatin accessibility revealed broad co-variation across molecular layers as well as shared and unique drivers of quantitative variation in pluripotency-associated pathways. Quantitative trait locus (QTL) mapping localized the drivers of these multi-omic signatures to genomic hotspots. This study reveals post-transcriptional mechanisms and genetic interactions that underlie quantitative variability in the pluripotent proteome and provides a regulatory map for mESCs that can provide a basis for future mechanistic studies
- …