1,157 research outputs found

    Periodicity-dependence of the ferroelectric properties in BiFeO3/SrTiO3 multiferroic superlattices

    Full text link
    Artificial superlattices of (BiFeO3)m(SrTiO3)m (m= 1 to 10 unit cells) consisting of multiferroic BiFeO3 and insulating SrTiO3 layers were fabricated on (100)-oriented SrTiO3 substrates by pulsed laser ablation. The remnant polarization and leakage current behavior were studied varying the periodicity (8-80A) of the superlattice. The leakage current was reduced by few orders of magnitude on increase of periodicity compared to single layer BiFeO3 thin films. Reduced leakage and intrinsic polarization hysteresis was observed and was confirmed by PUND analysis for periodicities in the range 20-60A. The leakage current was observed to be dominated by space charge limited conductionComment: Submitted to Applied Physics Letter

    Interfacial contribution to the dielectric response in semiconducting LaBiMn4/3Co2/3O6

    Full text link
    Impedance measurements have been performed on a sintered polycrystalline sample of the perovskite LaBiMn4/3Co2/3O6. Colossal dielectric permittivity often is measured in this class of semiconducting materials as a result of extrinsic factors. Our results show that a large offset in the capacitance, measured on a series of samples with different thickness, is due to the interfacial polarization. This contribution then can be removed from the data, creating a general procedure for dielectric measurements in semiconducting samples.Comment: 13 pages, 4 figure

    Probing of local ferroelectricity in BiFeO3 thin films and (BiFeO3)m(SrTiO3)m superlattices

    Full text link
    Ferroelectric BiFeO3 thin films and artificial superlattices of (BiFeO3)m(SrTiO3)m (m~ 1 to 10 unit cells) were fabricated on (001)-oriented SrTiO3 substrates by pulsed laser ablation. The variation of leakage current and macroscopic polarization with periodicity was studied. Piezo force microscopy studies revealed the presence of large ferroelectric domains in the case of BiFeO3 thin films while a size reduction in ferroelectric domains was observed in the case of superlattice structures. The results show that the modification of ferroelectric domains through superlattice, could provide an additional control on engineering the domain wall mediated functional properties.Comment: 14 pages, To be published in J. Mag. Mag Mater. proceedings of EMRS 200

    Discriminating quantum-optical beam-splitter channels with number-diagonal signal states: Applications to quantum reading and target detection

    Full text link
    We consider the problem of distinguishing, with minimum probability of error, two optical beam-splitter channels with unequal complex-valued reflectivities using general quantum probe states entangled over M signal and M' idler mode pairs of which the signal modes are bounced off the beam splitter while the idler modes are retained losslessly. We obtain a lower bound on the output state fidelity valid for any pure input state. We define number-diagonal signal (NDS) states to be input states whose density operator in the signal modes is diagonal in the multimode number basis. For such input states, we derive series formulas for the optimal error probability, the output state fidelity, and the Chernoff-type upper bounds on the error probability. For the special cases of quantum reading of a classical digital memory and target detection (for which the reflectivities are real valued), we show that for a given input signal photon probability distribution, the fidelity is minimized by the NDS states with that distribution and that for a given average total signal energy N_s, the fidelity is minimized by any multimode Fock state with N_s total signal photons. For reading of an ideal memory, it is shown that Fock state inputs minimize the Chernoff bound. For target detection under high-loss conditions, a no-go result showing the lack of appreciable quantum advantage over coherent state transmitters is derived. A comparison of the error probability performance for quantum reading of number state and two-mode squeezed vacuum state (or EPR state) transmitters relative to coherent state transmitters is presented for various values of the reflectances. While the nonclassical states in general perform better than the coherent state, the quantitative performance gains differ depending on the values of the reflectances.Comment: 12 pages, 7 figures. This closely approximates the published version. The major change from v2 is that Section IV has been re-organized, with a no-go result for target detection under high loss conditions highlighted. The last sentence of the abstract has been deleted to conform to the arXiv word limit. Please see the PDF for the full abstrac

    Frustration of square cupola in Sr(TiO)Cu4_{4}(PO4_{4})4_{4}

    Full text link
    The structural and magnetic properties of the square-cupola antiferromagnet Sr(TiO)Cu4_{4}(PO4_{4})4_{4} are investigated via x-ray diffraction, magnetization, heat capacity, and 31^{31}P nuclear magnetic resonance experiments on polycrystalline samples, as well as density-functional band-structure calculations. The temperature-dependent unit cell volume could be described well using the Debye approximation with the Debye temperature of θD\theta_{\rm D} \simeq 550~K. Magnetic response reveals a pronounced two-dimensionality with a magnetic long-range-order below TN6.2T_{\rm N} \simeq 6.2~K. High-field magnetization exhibits a kink at 1/31/3 of the saturation magnetization. Asymmetric 31^{31}P NMR spectra clearly suggest strong in-plane anisotropy in the magnetic susceptibility, as anticipated from the crystal structure. From the 31^{31}P NMR shift vs bulk susceptibility plot, the isotropic and axial parts of the hyperfine coupling between 31^{31}P nuclei and the Cu2+^{2+} spins are calculated to be Ahfiso6539A_{\rm hf}^{\rm iso} \simeq 6539 and Ahfax952A_{\rm hf}^{\rm ax} \simeq 952~Oe/μB\mu_{\rm B}, respectively. The low-temperature and low-field 31^{31}P NMR spectra indicate a commensurate antiferromagnetic ordering. Frustrated nature of the compound is inferred from the temperature-dependent 31^{31}P NMR spin-lattice relaxation rate and confirmed by our microscopic analysis that reveals strong frustration of the square cupola by next-nearest-neighbor exchange couplings.Comment: 11 pages, 13 figures, 1 table, Phys. Rev. B (Accepted, 2018

    Collinear order in a frustrated three-dimensional spin-12\frac12 antiferromagnet Li2_2CuW2_2O8_8

    Full text link
    Magnetic frustration in three dimensions (3D) manifests itself in the spin-12\frac12 insulator Li2_2CuW2_2O8_8. Density-functional band-structure calculations reveal a peculiar spin lattice built of triangular planes with frustrated interplane couplings. The saturation field of 29 T contrasts with the susceptibility maximum at 8.5 K and a relatively low N\'eel temperature TN3.9T_N\simeq 3.9 K. Magnetic order below TNT_N is collinear with the propagation vector (0,12,0)(0,\frac12,0) and an ordered moment of 0.65(4) μB\mu_B according to neutron diffraction data. This reduced ordered moment together with the low maximum of the magnetic specific heat (Cmax/R0.35C^{\max}/R\simeq 0.35) pinpoint strong magnetic frustration in 3D. Collinear magnetic order suggests that quantum fluctuations play crucial role in this system, where a non-collinear spiral state would be stabilized classically.Comment: published version with supplemental material merged into the tex

    Phen­yl(3-methyl-1-phenyl­sulfonyl-1H-indol-2-yl)methanone

    Get PDF
    In the title compound, C22H17NO3S, the N atom of the indole ring system deviates by 0.031 (3) Å from a least-squares plane fitted through all nine non-H ring atoms. The geometry around the S atom can be described as distorted tetra­hedral. As a result of the electron-withdrawing character of the phenyl­sulfonyl groups, the N—Csp 2 bond lengths are longer than the typical mean value for N atoms with a planar configuration

    Asian Elephants as Agricultural Pests: Damages, Economics of Control and Compensation in Sri Lanka

    Get PDF
    Despite growing attention to crop and property damage caused by the Asian elephant, uncertainty exists about the magnitude of this problem. This paper explores the nature and magnitude of this problem of Sri Lanka. An economic analysis of individual farmers’ decisions to control elephants is provided. Government policies to assist farmers to cope with the elephant pest problem are assessed. Appropriate compensation schemes for farmers are seen as potentially more effective for conserving elephants in Sri Lanka than legal prohibitions on killing of elephants. Issues raised have wider relevance than merely to Sri Lanka or Asian elephants
    corecore