166 research outputs found

    Family Diabetes Camp Amidst COVID-19: A Community of Practice Model

    Get PDF
    Studies have found that youth are experiencing higher anxiety levels than prior to COVID-19, and youth with type 1 diabetes are at higher risk. Medical specialty camps are a type of camp that provide opportunities for youth with chronic illnesses to share common goals, increase socialization, improve camper well-being, and increase knowledge of diabetes management. The program evaluation sought to determine the impact of a campers’ outcomes of independence and perceived competence and familial impact during COVID-19. Over half the participants were at their first diabetes camp and 71% of the campers felt their perceived competence “increased a little bit” because of camp. Over 95% of parents felt that their participation in camp had increased their diabetes knowledge. Qualitative data from parents revealed 2 themes, camp as a meeting place and learning from others. The findings from this study demonstrate that medical specialty camps influence campers’ perceptions of independence and competence and that families play an important role in creating a community of practice

    Distribution of sulfate-reducing bacteria in a stratified Fjord (Mariager Fjord, Denmark) as evaluated by most-probable-number counts and denaturing gradient gel electrophoresis of PCR-amplified ribosomal DNA fragments

    Get PDF
    The sulfate-reducing bacterial populations of a stratified marine water column, Mariager Fjord, Denmark, were investigated by molecular and culture-dependent approaches in parallel. Denaturing gradient gel electrophoresis (DGGE) of PCR-amplified 16S rRNA and DNA encoding rRNA (rDNA) isolated from the water column indicated specific bacterial populations in different water column layers and revealed a highly differentiated pattern of rRNA- and rDNA-derived PCR amplificates, probably reflecting active and resting bacterial populations. Hybridization of DGGE patterns with rRNA probes indicated the increased presence and activity (by at least 1 order of magnitude) of sulfate-reducing bacteria within and below the chemocline. Parallel to this molecular approach, an approach involving most-probable-number (MPN) counts was used, and it found a similar distribution of cultivable sulfate-reducing bacteria in the water column of Mariager Fjord, Approximately 25 cells and 250 cells per ml above and below the chemocline, respectively, were found. Desulfovibrio-and Desulfobulbus-relateA strains occurred in the oxic zone. DGGE bands from MPN cultures were sequenced and compared with those obtained from nucleic acids extracted from water column samples. The MPN isolates were phylogenetically affiliated with sulfate-reducing delta subdivision proteobacteria (members of the genera Desulfovibrio, Desulfobulbus, and Desulfobacter), whereas the molecular isolates constituted an independent lineage of the delta subdivision proteobacteria. DGGE of PCR-amplified nucleic acids with general eubacterial PCR primers conceptually revealed the general bacterial population, whereas the use of culture media allowed cultivable sulfate-reducing bacteria to be selected. A parallel study of Mariager Fjord biogeochemistry, bacterial activity, and bacterial counts complementing this investigation has been presented elsewhere (N. B. Ramsing, H. Fossing, T. G. Ferdelman, F. Andersen, and B. Thamdrup, Appl. Environ. Microbiol. 62:1391-1404, 1996)

    Sulfate-reducing bacteria and their activities in cyanobacterial mats of Solar Lake (Sinai, Egypt)

    Get PDF
    The sulfate-reducing bacteria within the surface layer of the hypersaline cyanobacterial mat of Solar Lake (Sinai, Egypt) were investigated with combined microbiological, molecular, and biogeochemical approaches. The diurnally oxic surface layer contained between 106 and 107 cultivable sulfate-reducing bacteria ml-1 and showed sulfate reduction rates between 1,000 and 2,200 nmol ml-1 day-1, both in the same range as and sometimes higher than those in anaerobic deeper mat layers. In the oxic surface layer and in the mat layers below, filamentous sulfate-reducing Desulfonema bacteria were found in variable densities of 104 to 106 cells ml-1. A Desulfonema-related, diurnally migrating bacterium was detected with PCR and denaturing gradient gel electrophoresis within and below the oxic surface layer. Facultative aerobic respiration, filamentous morphology, motility, diurnal migration, and aggregate formation were the most conspicuous adaptations of Solar Lake sulfate-reducing bacteria to the mat matrix and to diurnal oxygen stress. A comparison of sulfate reduction rates within the mat and previously published photosynthesiS rates showed that CO2 from sulfate reduction in the upper 5 mm accounted for 7 to 8% of the total photosynthetic CO2 demand of the mat

    Long-term Farming System Comparison Trial in India

    Get PDF
    Background: Developing sustainable farming system on large scale is very important for sustainable development of global agriculture. Scientific information about organic vs. conventional agriculture in the tropics is sparse

    Conceptualising adventurous nature sport: A positive psychology perspective

    Get PDF
    Abstract Research and public policy has long supported links between traditional sports and well-being. However, adventurous nature sport literature has primarily focused on performance issues and deficit models of risk or sensation-seeking. This standpoint is limited by assumptions that participation is: (a) dependent on personality structures; (b) solely motivated by risk-taking and hedonism; (c) only attractive or accessible to a narrow demographic; and (d) widely perceived as dysfunctional or deviant. In contrast, recent research suggests that adventurous nature sports provide unique benefits due to their context. This paper critically assesses the validity of dominant perspectives against emerging literature to illustrate how nature sports can be conceptualised through a positive psychology lens as well-being activities that facilitate both hedonic and eudaimonic outcomes. The significance of this perspective is that nature sports may become an important consideration when designing health and well-being interventions for both people and the planet

    Germ Warfare in a Microbial Mat Community: CRISPRs Provide Insights into the Co-Evolution of Host and Viral Genomes

    Get PDF
    CRISPR arrays and associated cas genes are widespread in bacteria and archaea and confer acquired resistance to viruses. To examine viral immunity in the context of naturally evolving microbial populations we analyzed genomic data from two thermophilic Synechococcus isolates (Syn OS-A and Syn OS-Bâ€Č) as well as a prokaryotic metagenome and viral metagenome derived from microbial mats in hotsprings at Yellowstone National Park. Two distinct CRISPR types, distinguished by the repeat sequence, are found in both the Syn OS-A and Syn OS-Bâ€Č genomes. The genome of Syn OS-A contains a third CRISPR type with a distinct repeat sequence, which is not found in Syn OS-Bâ€Č, but appears to be shared with other microorganisms that inhabit the mat. The CRISPR repeats identified in the microbial metagenome are highly conserved, while the spacer sequences (hereafter referred to as “viritopes” to emphasize their critical role in viral immunity) were mostly unique and had no high identity matches when searched against GenBank. Searching the viritopes against the viral metagenome, however, yielded several matches with high similarity some of which were within a gene identified as a likely viral lysozyme/lysin protein. Analysis of viral metagenome sequences corresponding to this lysozyme/lysin protein revealed several mutations all of which translate into silent or conservative mutations which are unlikely to affect protein function, but may help the virus evade the host CRISPR resistance mechanism. These results demonstrate the varied challenges presented by a natural virus population, and support the notion that the CRISPR/viritope system must be able to adapt quickly to provide host immunity. The ability of metagenomics to track population-level variation in viritope sequences allows for a culture-independent method for evaluating the fast co-evolution of host and viral genomes and its consequence on the structuring of complex microbial communities

    Evidence-Based Management of Hand Eczema

    Get PDF
    Hand eczema is a common skin disease with a wide variation in morphology and a complex etiology based on endogenous and exogenous factors.The diagnosis of hand eczema is based on patient history, exposure assessment, physical examination, and the results of patch testing. Management of hand eczema starts with education of the patient on the etiology of the disease, and the needed changes in behavior regarding skin care and preventive measures, and avoidance of relevant exposure factors. In many cases, medical treatment is needed for successful management of the disease; use of medication can only be successful with proper education and avoidance of relevant exposure

    A Novel Conductometric Urea Biosensor with Improved Analytical Characteristic Based on Recombinant Urease Adsorbed on Nanoparticle of Silicalite

    Get PDF
    Development of a conductometric biosensor for the urea detection has been reported. It was created using a non-typical method of the recombinant urease immobilization via adsorption on nanoporous particles of silicalite. It should be noted that this biosensor has a number of advantages, such as simple and fast performance, the absence of toxic compounds during biosensor preparation, and high reproducibility (RSD = 5.1 %). The linear range of urea determination by using the biosensor was 0.05–15 mM, and a lower limit of urea detection was 20 ΌM. The bioselective element was found to be stable for 19 days. The characteristics of recombinant urease-based biomembranes, such as dependence of responses on the protein and ion concentrations, were investigated. It is shown that the developed biosensor can be successfully used for the urea analysis during renal dialysis
    • 

    corecore