372 research outputs found

    Large, sustained cardiac lipid peroxidation and reduced antioxidant capacity in the coronary circulation after brief episodes of myocardial ischemia

    Get PDF
    AbstractOBJECTIVESWe sought to investigate whether a brief episode of myocardial ischemia produces a detectable cardiac oxidative stress in patients undergoing elective coronary angioplasty (PTCA).BACKGROUNDAlthough cardiac oxidative stress has been clearly demonstrated in experimental models of ischemia-reperfusion, its presence in patients after transient myocardial ischemia is still unclear.METHODSIn order to evaluate oxidative stress in ischemic cardiac regions, plasma conjugated dienes (CD), lipid hydroperoxides (ROOHs) and total antioxidant capacity (TRAP), independent indexes of oxidative stress, were measured in the aorta and great cardiac vein (GCV) before (t0), 1, (t1), 5 (t5) and 15 min (t15) after first balloon inflation in 15 patients undergoing PTCA on left anterior descending coronary artery (Group 1); six patients with right coronary artery stenosis (Group 2), which is not drained by the GCV, were studied as controls.RESULTSIn Group 1 at baseline, CD and ROOHs levels were higher in GCV than in aorta (p < 0.01 for both), and TRAP levels were lower (p < 0.01). Aortic levels of CD, ROOHs and TRAP did not change at any time after t0; venous levels of CD and ROOHs levels markedly increased at t1, at t5and remained elevated at t15(p < 0.01 for all comparisons vs. t0); venous levels of TRAP decreased at t1and t5(p < 0.01 vs. t0) and returned to normal at t15. In Group 2, CD, ROOHs and TRAP levels were similar in the aorta and GCV and did not change throughout the study.CONCLUSIONSShort episodes of myocardial ischemia during PTCA induce a sustained oxidative stress, which is detectable in the venous effluent of reperfused myocardium

    Nuclear phospholipase C β1 signaling, epigenetics and treatments in MDS.

    Get PDF
    Myelodysplastic syndromes (MDS), clonal hematopoietic stem-cell disorders mainly affecting older adult patients, show ineffective hematopoiesis in one or more of the lineages of the bone marrow. Most MDS are characterized by anemia, and a number of cases progresses to acute myeloid leukemia (AML). Indeed, the molecular mechanisms underlying the MDS evolution to AML are still unclear, even though the nuclear signaling elicited by PI-PLCβ1 has been demonstrated to play an important role in the control of the balance between cell cycle progression and apoptosis in MDS cells. Here we review both the role of epigenetic therapy on PI-PLCβ1 promoter and the changes in PI-PLCβ1 expression in MDS patients treated for anemia.Myelodysplastic syndromes (MDS), clonal hematopoietic stem-cell disorders mainly affecting older adult patients, show ineffective hematopoiesis in one or more of the lineages of the bone marrow. Most MDS are characterized by anemia, and a number of cases progresses to acute myeloid leukemia (AML). Indeed, the molecular mechanisms underlying the MDS evolution to AML are still unclear, even though the nuclear signaling elicited by PI-PLCβ1 has been demonstrated to play an important role in the control of the balance between cell cycle progression and apoptosis in MDS cells. Here we review both the role of epigenetic therapy on PI-PLCβ1 promoter and the changes in PI-PLCβ1 expression in MDS patients treated for anemia. © 2012 Elsevier Ltd

    PLC-beta 1 regulates the expression of miR-210 during mithramycin-mediated erythroid differentiation in K562 cells

    Get PDF
    PLC-beta 1 (PLCβ1) inhibits in human K562 cells erythroid differentiation induced by mithramycin (MTH) by targeting miR-210 expression. Inhibition of miR-210 affects the erythroid differentiation pathway and it occurs to a greater extent in MTH-treated cells. Overexpression of PLCβ1 suppresses the differentiation of K562 elicited by MTH as demonstrated by the absence of γ-globin expression. Inhibition of PLCβ1 expression is capable to promote the differentiation process leading to a recovery of γ-globin gene even in the absence of MTH. Our experimental evidences suggest that PLCβ1 signaling regulates erythropoiesis through miR-210. Indeed overexpression of PLCβ1 leads to a decrease of miR-210 expression after MTH treatment. Moreover miR-210 is up-regulated when PLCβ1 expression is down-regulated. When we silenced PKCα by RNAi technique, we found a decrease in miR-210 and γ-globin expression levels, which led to a severe slowdown of cell differentiation in K562 cells and these effects were the same encountered in cells overexpressing PLCβ1. Therefore we suggest a novel role for PLCβ1 in regulating miR-210 and our data hint at the fact that, in human K562 erythroleukemia cells, the modulation of PLCβ1 expression is able to exert an impairment of normal erythropoiesis as assessed by γ-globin expression

    Epigenetic Regulation of Nuclear PI-PLC beta1 Signalling Pathway in Low-Risk MDS Patients During Azacitidine Treatment

    Get PDF
    Myelodysplastic syndromes (MDS) are a heterogeneous group of hematological malignancies characterized by epigenetic abnormalities and therefore treated with demethylating agents [1]. PI-PLCbeta1 has been reported to be a specific target for demethylating therapy in high-risk MDS patients, since azacitidine treatment can be associated with a PI-PLCbeta1 specific promoter demethylation and induction of both PI-PLCbeta1 gene and protein expression [1]. In the present study we investigated the role of epigenetic regulation of PI-PLCbeta1, mainly focusing on the functional role of azacitidine on the structure of the PI-PLCbeta1 promoter. We firstly examined the effect of azacitidine on PI-PLCbeta1 promoter methylation and gene expression in low-risk MDS. Moreover, we studied the expression of key molecules involved in the nuclear inositide signalling pathway, such as Cyclin D3. We also studied the correlation between the demethylating effect of azacitidine and the degree of recruitment to PI-PLCbeta1 promoter of some transcription factors implicated in hematopoietic stem cell proliferation and differentiation, as well as of the Methyl-CpG binding domain proteins (MBDs), which specifically interact with methylated DNA. Taken together, our results hint at a specific involvement of PI-PLCbeta1 in epigenetic mechanisms, and are particularly consistent with the hypothesis of a role for PI-PLCbeta1 in azacitidine- induced myeloid differentiation
    corecore