2,944 research outputs found

    Model-independent Limits from Spin-dependent WIMP Dark Matter Experiments

    Full text link
    Spin-dependent WIMP searches have traditionally presented results within an odd group approximation and by suppressing one of the spin-dependent interaction cross sections. We here elaborate on a model-independent analysis in which spin-dependent interactions with both protons and neutrons are simultaneously considered. Within this approach, equivalent current limits on the WIMP-nucleon interaction at WIMP mass of 50 GeV/c2^{2} are either σp≤0.7\sigma_{p}\leq0.7 pb, σn≤0.2\sigma_{n}\leq0.2 pb or ∣ap∣≤0.4|a_{p}|\leq0.4, ∣an∣≤0.7|a_{n}|\leq0.7 depending on the choice of cross section or coupling strength representation. These limits become less restrictive for either larger or smaller masses; they are less restrictive than those from the traditional odd group approximation regardless of WIMP mass. Combination of experimental results are seen to produce significantly more restrictive limits than those obtained from any single experiment. Experiments traditionally considered spin-independent are moreover found to severely limit the spin-dependent phase space. The extension of this analysis to the case of positive signal experiments is explored.Comment: 12 pages, 12 figures, submitted to Phys. Rev.

    Development of space-syaple thermal-control coatings triannual report, jan. 20 - may 20, 1965

    Get PDF
    Development of stable thermal control coatings with low solar absorptance to infrared emittance rati

    Solution of two-center time-dependent Dirac equation in spherical coordinates: Application of the multipole expansion of the electron-nuclei interaction

    Full text link
    A non-perturbative approach to the solution of the time-dependent, two-center Dirac equation is presented with a special emphasis on the proper treatment of the potential of the nuclei. In order to account for the full multipole expansion of this potential, we express eigenfunctions of the two-center Hamiltonian in terms of well-known solutions of the "monopole" problem that employs solely the spherically-symmetric part of the interaction. When combined with the coupled-channel method, such a wavefunction-expansion technique allows for an accurate description of the electron dynamics in the field of moving ions for a wide range of internuclear distances. To illustrate the applicability of the proposed approach, the probabilities of the K- as well as L- shell ionization of hydrogen-like ions in the course of nuclear alpha-decay and slow ion-ion collisions have been calculated

    Dynamical symmetry of isobaric analog 0+ states in medium mass nuclei

    Get PDF
    An algebraic sp(4) shell model is introduced to achieve a deeper understanding and interpretation of the properties of pairing-governed 0+ states in medium mass atomic nuclei. The theory, which embodies the simplicity of a dynamical symmetry approach to nuclear structure, is shown to reproduce the excitation spectra and fine structure effects driven by proton-neutron interactions and isovector pairing correlations across a broad range of nuclei.Comment: 7 pages, 5 figure

    Perception of pain as a result of orthodontic treatment with fixed appliances

    Get PDF
    The aims of this study were to investigate the intensity, location and duration of patients' discomfort following insertion of orthodontic appliances, and to examine for interactions between patient age, gender, appliance type and the perception of pain. After insertion of orthodontic appliances, 170 patients received eight questionnaires, one they completed and returned after 4 h, then one daily for 7 days. The respondents' ages ranged from 8-53 years (median age 13 years 7 months); 45 per cent were male and 55 per cent female. Of the patients, 65 per cent reported pain after 4 h and 95 per cent after 24 h. After 7 days, 25 per cent of the patients still reported discomfort. Patients' pain intensity scores were significantly higher for the anterior than for the posterior teeth. On day 1, 16 per cent took analgesics and 18 per cent reported being awakened the first night. Comparing a 2 × 4 appliance, a full appliance in one arch and in both arches, no statistical differences were found for reported pain frequency, general intensity of pain, pain at the teeth, discomfort when biting and chewing and analgesic consumption. The perception of general pain intensity, analgesic consumption, pain when eating and the influence of discomfort on daily life were all significantly greater in girls than in boys. Patients younger than 13 years reported pain significantly less frequently than the older patients. The highest frequency of pain was found in the group of 13-16 year olds. The pain intensity did not differ among the age group

    A QuantCrit Analysis of Context, Discipline, Special Education, and Disproportionality

    Get PDF
    Using a dis/ability critical race theory (DisCrit) and critical quantitative (QuantCrit) lens, we examine disproportionate application of exclusionary discipline on multiply marginalized youth, foregrounding systemic injustice and institutionalized racism. In doing so, we examined temporal-, student-, and school-level factors that may result in exclusion and othering (i.e., placing into special education and punishing with out-of-school suspensions) within one school district. We frame this study in DisCrit and QuantCrit frameworks to connect data-based decision making to sociocultural understandings of the ways in which schools use both special education and discipline to simultaneously provide and limit opportunities for different student groups. Results showed a complex interconnectedness between student sociodemographic labels (e.g., gender, race, and socioeconomic status) and factors associated with both special education identification and exclusionary discipline. Our findings suggest that quantitative studies lacking in-depth theoretical justification may perpetuate deficit understandings of the racialization of disability and intersections with exclusionary discipline

    Coupling transport and biodegradation of VOCs in surface and subsurface soils.

    Get PDF
    Volatile organic chemicals present at Superfund sites preferentially partition into the soil gas and may be available for microbial degradation. A simple mass transfer model for biodegradation for volatile substrates has been developed for the aerobic decomposition of aromatic and aliphatic hydrocarbons. The mass transfer analysis calculates diffusive fluxes from soil gas through water and membrane films and into the cell. This model predicts an extreme sensitivity of potential biodegradation rates to the air-water partition coefficients of the compounds. Aromatic hydrocarbons are removed rapidly while the aliphatic hydrocarbons are much slower by orders of magnitude. Furthermore, oxygen transfer is likely to limit aromatic hydrocarbon degradation rates. The model presents results that cast doubt on the practicality of using methane or propane for the co-metabolic destruction of trichloroethylene in a gas phase bioreactor. Toluene as a primary substrate has better mass transfer characteristics to achieve more efficient trichloroethylene degradation. Hence, in sites where these contaminants coexist, bioremediation could be improved

    Evidence for a long-lived superheavy nucleus with atomic mass number A=292 and atomic number Z=~122 in natural Th

    Full text link
    Evidence for the existence of a superheavy nucleus with atomic mass number A=292 and abundance (1-10)x10^(-12) relative to 232Th has been found in a study of natural Th using inductively coupled plasma-sector field mass spectrometry. The measured mass matches the predictions [1,2] for the mass of an isotope with atomic number Z=122 or a nearby element. Its estimated half-life of t1/2 >= 10^8 y suggests that a long-lived isomeric state exists in this isotope. The possibility that it might belong to a new class of long-lived high spin super- and hyperdeformed isomeric states is discussed.[3-6]Comment: 14 pages, 5 figure

    Isospin symmetry breaking in an algebraic pairing Sp(4) model

    Get PDF
    An exactly solvable sp(4) algebraic approach extends beyond the traditional isospin conserving nuclear interaction to bring forward effects of isospin symmetry breaking and isospin mixing resulting from a two-body nuclear interaction that includes proton-neutron (pn) and like-particle isovector pairing correlations plus significant isoscalar pn interactions. The model yields an estimate for the extent to which isobaric analog 0+ states in light and medium mass nuclei may mix with one another and reveals possible, but still extremely weak, non-analog beta-decay transitions.Comment: 8 pages, 2 figure
    • …
    corecore