230 research outputs found

    CMB statistical isotropy confirmation at all scales using multipole vectors

    Full text link
    We present an efficient numerical code and conduct, for the first time, a null and model-independent CMB test of statistical isotropy using Multipole Vectors (MVs) at all scales. Because MVs are insensitive to the angular power spectrum CC_\ell, our results are independent from the assumed cosmological model. We avoid a posteriori choices and use pre-defined ranges of scales [2,30]\ell\in[2,30], [2,600]\ell\in[2,600] and [2,1500]\ell\in[2,1500] in our analyses. We find that all four masked Planck maps, from both 2015 and 2018 releases, are in agreement with statistical isotropy for [2,30]\ell\in[2,30], [2,600]\ell\in[2,600]. For [2,1500]\ell\in[2,1500] we detect anisotropies but this is indicative of simply the anisotropy in the noise: there is no anisotropy for <1300\ell < 1300 and an increasing level of anisotropy at higher multipoles. Our findings of no large-scale anisotropies seem to be a consequence of avoiding \emph{a posteriori} statistics. We also find that the degree of anisotropy in the full sky (i.e. unmasked) maps vary enormously (between less than 5 and over 1000 standard deviations) among the different mapmaking procedures and data releases.Comment: v4: additional analysis which increased statistical sensitivity, including new plots and tables; extended discussion; 15 pages, 14 figures, 7 tables. Matches published versio

    Dynamical Evolution of Interacting Modified Chaplygin Gas

    Full text link
    The cosmological model of the modified Chaplygin gas interacting with cold dark matter is studied. Our attention is focused on the final state of universe in the model. It turns out that there exists a stable scaling solution, which provides the possibility to alleviate the coincidence problem. In addition, we investigate the effect of the coupling constants c1c_{1} and c2c_{2} on the dynamical evolution of this model from the statefinder viewpoint. It is found that the coupling constants play a significant role during the dynamical evolution of the interacting MCG model. Furthermore, we can distinguish this interacting model from other dark energy models in the srs-r plane.Comment: 10 pages, 6 figures, accepted for publication in Int. J. Mod. Phys.

    On the Possibility of Anisotropic Curvature in Cosmology

    Full text link
    In addition to shear and vorticity a homogeneous background may also exhibit anisotropic curvature. Here a class of spacetimes is shown to exist where the anisotropy is solely of the latter type, and the shear-free condition is supported by a canonical, massless 2-form field. Such spacetimes possess a preferred direction in the sky and at the same time a CMB which is isotropic at the background level. A distortion of the luminosity distances is derived and used to test the model against the CMB and supernovae (using the Union catalog), and it is concluded that the latter exhibit a higher-than-expected dependence on angular position. It is shown that future surveys could detect a possible preferred direction by observing ~ 20 / (\Omega_{k0}^2) supernovae over the whole sky.Comment: Extended SNe analysis and corrected some CMB results. Text also extended and references added. 8 pages, 5 figure

    Studies on the association of the Quercus suber decline disease with Phytophthora cinnamomi in Portugal

    Get PDF
    In Portugal, the decline disease has been described in evergreen oaks (Quercus suber L. and Q.ilex subsp. rotundifolia Lam.) since the end of the 19th century. The mortality of these species affects, particularly the central and southern regions of the country, being one of the most severe forest problems. Phytophthora cinnamomi Rands is the main pathogen responsible for the cork and holm oak mortality in Portugal. Several studies have been developed aiming at a better understanding of the effect of the P. cinnamomi action on the cork oak trees decline. The present work describes preliminary results of some of these studies

    Studies on the association of the Quercus suber decline disease with Phytophthora cinnamomi in Portugal

    Get PDF
    En Portugal, la enfermedad de la “seca” se ha descrito en los Quercus de hoja perenne (Quercus suber L. and Q.ilex subsp. rotundifolia Lam.) desde el final del siglo XIX. La mortalidad de estas especies afecta, particularmente las regiones centrales y meridionales del país, siendo uno de los problemas forestales más graves. Phytophthora cinnamomi Rands es el principal patógeno responsable de la mortalidad de alcornoques y encinas en Portugal. Se han desarrollado varios estudios teniendo como objetivo una mejor comprensión del efecto de la acción de P. cinnamomi en el decaimiento de los Quercus. El actual trabajo describe resultados preliminares de algunos de estos estudios.___________________________________In Portugal, the decline disease has been described in evergreen oaks (Quercus suber L. and Q.ilex subsp. rotundifolia Lam.) since the end of the 19th century. The mortality of these species affects, particularly the central and southern regions of the country, being one of the most severe forest problems. Phytophthora cinnamomi Rands is the main pathogen responsible for the cork and holm oak mortality in Portugal. Several studies have been developed aiming at a better understanding of the effect of the P. cinnamomi action on the cork oak trees decline. The present work describes preliminary results of some of these studies

    On the growth of perturbations in interacting dark energy and dark matter fluids

    Full text link
    The covariant generalizations of the background dark sector coupling suggested in G. Mangano, G. Miele and V. Pettorino, Mod. Phys. Lett. A 18, 831 (2003) are considered. The evolution of perturbations is studied with detailed attention to interaction rate that is proportional to the product of dark matter and dark energy densities. It is shown that some classes of models with coupling of this type do not suffer from early time instabilities in strong coupling regime.Comment: 11 pages, 2 figures. v3: minor changes, typos fixe

    Kosterlitz-Thouless transition in three-state mixed Potts ferro-antiferromagnets

    Full text link
    We study three-state Potts spins on a square lattice, in which all bonds are ferromagnetic along one of the lattice directions, and antiferromagnetic along the other. Numerical transfer-matrix are used, on infinite strips of width LL sites, 4L144 \leq L \leq 14. Based on the analysis of the ratio of scaled mass gaps (inverse correlation lengths) and scaled domain-wall free energies, we provide strong evidence that a critical (Kosterlitz-Thouless) phase is present, whose upper limit is, in our best estimate, Tc=0.29±0.01T_c=0.29 \pm 0.01. From analysis of the (extremely anisotropic) nature of excitations below TcT_c, we argue that the critical phase extends all the way down to T=0. While domain walls parallel to the ferromagnetic direction are soft for the whole extent of the critical phase, those along the antiferromagnetic direction seem to undergo a softening transition at a finite temperature. Assuming a bulk correlation length varying, for T>TcT>T_c, as ξ(T)=aξexp[bξ(TTc)σ]\xi (T) =a_\xi \exp [ b_\xi (T-T_c)^{-\sigma}], σ1/2\sigma \simeq 1/2, we attempt finite-size scaling plots of our finite-width correlation lengths. Our best results are for Tc=0.50±0.01T_c=0.50 \pm 0.01. We propose a scenario in which such inconsistency is attributed to the extreme narrowness of the critical region.Comment: 11 pages, 6 .eps figures, LaTeX with IoP macros, to be published in J Phys

    Dynamically avoiding fine-tuning the cosmological constant: the "Relaxed Universe"

    Full text link
    We demonstrate that there exists a large class of action functionals of the scalar curvature and of the Gauss-Bonnet invariant which are able to relax dynamically a large cosmological constant (CC), whatever it be its starting value in the early universe. Hence, it is possible to understand, without fine-tuning, the very small current value of the CC as compared to its theoretically expected large value in quantum field theory and string theory. In our framework, this relaxation appears as a pure gravitational effect, where no ad hoc scalar fields are needed. The action involves a positive power of a characteristic mass parameter, M, whose value can be, interestingly enough, of the order of a typical particle physics mass of the Standard Model of the strong and electroweak interactions or extensions thereof, including the neutrino mass. The model universe emerging from this scenario (the "Relaxed Universe") falls within the class of the so-called LXCDM models of the cosmic evolution. Therefore, there is a "cosmon" entity X (represented by an effective object, not a field), which in this case is generated by the effective functional and is responsible for the dynamical adjustment of the cosmological constant. This model universe successfully mimics the essential past epochs of the standard (or "concordance") cosmological model (LCDM). Furthermore, it provides interesting clues to the coincidence problem and it may even connect naturally with primordial inflation.Comment: LaTeX, 63 pp, 8 figures. Extended discussion. Version accepted in JCA

    Light propagation in statistically homogeneous and isotropic universes with general matter content

    Full text link
    We derive the relationship of the redshift and the angular diameter distance to the average expansion rate for universes which are statistically homogeneous and isotropic and where the distribution evolves slowly, but which have otherwise arbitrary geometry and matter content. The relevant average expansion rate is selected by the observable redshift and the assumed symmetry properties of the spacetime. We show why light deflection and shear remain small. We write down the evolution equations for the average expansion rate and discuss the validity of the dust approximation.Comment: 42 pages, no figures. v2: Corrected one detail about the angular diameter distance and two typos. No change in result

    Observational constraints on inhomogeneous cosmological models without dark energy

    Full text link
    It has been proposed that the observed dark energy can be explained away by the effect of large-scale nonlinear inhomogeneities. In the present paper we discuss how observations constrain cosmological models featuring large voids. We start by considering Copernican models, in which the observer is not occupying a special position and homogeneity is preserved on a very large scale. We show how these models, at least in their current realizations, are constrained to give small, but perhaps not negligible in certain contexts, corrections to the cosmological observables. We then examine non-Copernican models, in which the observer is close to the center of a very large void. These models can give large corrections to the observables which mimic an accelerated FLRW model. We carefully discuss the main observables and tests able to exclude them.Comment: 27 pages, 7 figures; invited contribution to CQG special issue "Inhomogeneous Cosmological Models and Averaging in Cosmology". Replaced to match the improved version accepted for publication. Appendix B and references adde
    corecore