3,252 research outputs found

    Computer codes for the evaluation of thermodynamic properties, transport properties, and equilibrium constants of an 11-species air model

    Get PDF
    The computer codes developed provide data to 30000 K for the thermodynamic and transport properties of individual species and reaction rates for the prominent reactions occurring in an 11-species nonequilibrium air model. These properties and the reaction-rate data are computed through the use of curve-fit relations which are functions of temperature (and number density for the equilibrium constant). The curve fits were made using the most accurate data believed available. A detailed review and discussion of the sources and accuracy of the curve-fitted data used herein are given in NASA RP 1232

    Hubbard-like Hamiltonians for interacting electrons in s, p and d orbitals

    Get PDF
    Hubbard-like Hamiltonians are widely used to describe on-site Coulomb interactions in magnetic and strongly-correlated solids, but there is much confusion in the literature about the form these Hamiltonians should take for shells of p and d orbitals. This paper derives the most general s, p and d orbital Hubbard-like Hamiltonians consistent with the relevant symmetries, and presents them in ways convenient for practical calculations. We use the full configuration interaction method to study p and d orbital dimers and compare results obtained using the correct Hamiltonian and the collinear and vector Stoner Hamiltonians. The Stoner Hamiltonians can fail to describe properly the nature of the ground state, the time evolution of excited states, and the electronic heat capacity.Comment: Updated the paper to make some clarifications and include colour figure

    Computer codes for the evaluation of thermodynamic and transport properties for equilibrium air to 30000 K

    Get PDF
    The computer codes developed here provide self-consistent thermodynamic and transport properties for equilibrium air for temperatures from 500 to 30000 K over a temperature range of 10 (exp -4) to 10 (exp -2) atm. These properties are computed through the use of temperature dependent curve fits for discrete values of pressure. Interpolation is employed for intermediate values of pressure. The curve fits are based on mixture values calculated from an 11-species air model. Individual species properties used in the mixture relations are obtained from a recent study by the present authors. A review and discussion of the sources and accuracy of the curve fitted data used herein are given in NASA RP 1260

    A review of reaction rates and thermodynamic and transport properties for an 11-species air model for chemical and thermal nonequilibrium calculations to 30000 K

    Get PDF
    Reaction rate coefficients and thermodynamic and transport properties are reviewed and supplemented for the 11-species air model which can be used for analyzing flows in chemical and thermal nonequilibrium up to temperatures of 3000 K. Such flows will likely occur around currently planned and future hypersonic vehicles. Guidelines for determining the state of the surrounding environment are provided. Curve fits are given for the various species properties for their efficient computation in flowfield codes. Approximate and more exact formulas are provided for computing the properties of partially ionized air mixtures in a high energy environment. Limitations of the approximate mixing laws are discussed for a mixture of ionized species. An electron number-density correction for the transport properties of the charged species is obtained. This correction has been generally ignored in the literature

    Revised Calibration Strategy for the CALIOP 532 nm Channel

    Get PDF
    The CALIPSO lidar (CALIOP) makes backscatter measurements at 532 nm and 1064 nm and linear depolarization ratios at 532 nm. Accurate calibration of the backscatter measurements is essential in the retrieval of optical properties. An assessment of the nighttime 532 nm parallel channel calibration showed that the calibration strategy used for the initial release (Release 1) of the CALIOP lidar level 1B data was acceptable. In general, the nighttime calibration coefficients are relatively constant over the darkest segment of the orbit, but then change rapidly over a short period as the satellite enters sunlight. The daytime 532 nm parallel channel calibration scheme implemented in Release 1 derived the daytime calibration coefficients from the previous nighttime coefficients. A subsequent review of the daytime 532 nm parallel channel calibration revealed that the daytime calibration coefficients do not remain constant, but vary considerably over the course of the orbit, due to thermally-induced misalignment of the transmitter and receiver. A correction to the daytime calibration scheme is applied in Release 2 of the data. Results of both nighttime and daytime calibration performance are presented in this paper

    A remembrance of things (best) forgotten: The 'allegorical past' and the feminist imagination

    Get PDF
    This is the author's PDF version of an article published in Feminist theology© 2012. The definitive version is available at http://fth.sagepub.com/This article discusses the US TV series Mad Men, which is set in an advertising agency in 1960s New York, in relation to two key elements which seem significant for a consideration of the current state of feminism in church and academy, both of which centre around what it means to remember or (not) to forget

    Normalization of large-scale behavioural data collected from zebrafish

    Get PDF
    Many contemporary neuroscience experiments utilize high-throughput approaches to simultaneously collect behavioural data from many animals. The resulting data are often complex in structure and are subjected to systematic biases, which require new approaches for analysis and normalization. This study addressed the normalization need by establishing an approach based on linear-regression modeling. The model was established using a dataset of visual motor response (VMR) obtained from several strains of wild-type (WT) zebrafish collected at multiple stages of development. The VMR is a locomotor response triggered by drastic light change, and is commonly measured repeatedly from multiple larvae arrayed in 96-well plates. This assay is subjected to several systematic variations. For example, the light emitted by the machine varies slightly from well to well. In addition to the light-intensity variation, biological replication also created batch-batch variation. These systematic variations may result in differences in the VMR and must be normalized. Our normalization approach explicitly modeled the effect of these systematic variations on VMR. It also normalized the activity profiles of different conditions to a common baseline. Our approach is versatile, as it can incorporate different normalization needs as separate factors. The versatility was demonstrated by an integrated normalization of three factors: light-intensity variation, batch-batch variation and baseline. After normalization, new biological insights were revealed from the data. For example, we found larvae of TL strain at 6 days post-fertilization (dpf) responded to light onset much stronger than the 9-dpf larvae, whereas previous analysis without normalization shows that their responses were relatively comparable. By removing systematic variations, our model-based normalization can facilitate downstream statistical comparisons and aid detecting true biological differences in high-throughput studies of neurobehaviour

    Overview of systematic reviews assessing the evidence for shorter versus longer duration antibiotic treatment for bacterial infections in secondary care

    Get PDF
    <div><p>Our objective was to assess the clinical effectiveness of shorter versus longer duration antibiotics for treatment of bacterial infections in adults and children in secondary care settings, using the evidence from published systematic reviews. We conducted electronic searches in MEDLINE, Embase, Cochrane, and Cinahl. Our primary outcome was clinical resolution. The quality of included reviews was assessed using the AMSTAR criteria, and the quality of the evidence was rated using the GRADE criteria. We included 6 systematic reviews (n = 3,162). Four reviews were rated high quality, and two of moderate quality. In adults, there was no difference between shorter versus longer duration in clinical resolution rates for peritonitis (RR 1.03, 95% CI 0.98 to 1.09, I<sup>2</sup> = 0%), ventilator-associated pneumonia (RR 0.93; 95% CI 0.81 to 1.08, I<sup>2</sup> = 24%), or acute pyelonephritis and septic UTI (clinical failure: RR 1.00, 95% CI 0.46 to 2.18). The quality of the evidence was very low to moderate. In children, there was no difference in clinical resolution rates for pneumonia (RR 0.98, 95% CI 0.91 to 1.04, I<sup>2</sup> = 48%), pyelonephritis (RR 0.95, 95% CI 0.88 to 1.04) and confirmed bacterial meningitis (RR 1.02, 95% CI 0.93 to 1.11, I<sup>2</sup> = 0%). The quality of the evidence was low to moderate. In conclusion, there is currently a limited body of evidence to clearly assess the clinical benefits of shorter versus longer duration antibiotics in secondary care. High quality trials assessing strategies to shorten antibiotic treatment duration for bacterial infections in secondary care settings should now be a priority.</p></div

    Neurenteric cyst at the dorsal craniocervical junction in a child: Case report

    Get PDF
    Neurenteric cysts, also known as enterogenous cysts, are uncommon, benign, congenital lesions that usually occur in the posterior mediastinum but can be seen at any level of the neuraxis. Here, we report a pediatric patient with a neurenteric cyst in the dorsal craniocervical junction as the only third reported pediatric case in the literature in this rare location, and describe the clinical course and pathologic findings with a review of the literature on this rare entity
    corecore