1,018 research outputs found

    Catecholamines and myocardial contractile function during hypodynamia and with an altered thyroid hormone balance

    Get PDF
    The dynamics of catecholamine content and myocardial contractile function during hypodynamia were studied in 109 white rats whose motor activity was severely restricted for up to 30 days. During the first five days myocardial catecholamine content, contractile function, and physical load tolerance decreased. Small doses of thyroidin counteracted this tendency. After 15 days, noradrenalin content and other indices approached normal levels and, after 30 days, were the same as control levels, although cardiac functional reserve was decreased. Thyroidin administration after 15 days had no noticeable effect. A detailed table shows changes in 17 indices of myocardial contractile function during hypodynamia

    Contribution of Benthic Processes to the Growth of Ooids on a Low-Energy Shore in Cat Island, The Bahamas

    Get PDF
    Ooids are typically found in frequently reworked coastal sediments, and are thought to accrete by inorganic chemical precipitation around moving grains. The high organic content and the presence of biosignatures, however, suggest that ooids interact with benthic microbial communities. Here, we investigate the role of benthic processes on ooid growth on a leeward shore of Cat Island, The Bahamas. Polished ooids are present in the surf zone, whereas dull ooids and grapestones are present in microbially colonized sediments seaward of the surf zone. Wave hydrodynamics and sediment transport modeling suggest that microbially colonized sediments are mobilized at monthly time scales. We propose a new conceptual model for both ooids and grapestone. Ooids rest and accrete in the area covered by microbial mats, but are periodically transported to the surf zone where wave abrasion polishes them within days. Ooids are then transported back to microbially colonized areas where the accretion cycle resumes. Ooids too large to be transported become trapped outside the surf zone, exit the “conveyor belt” and become grapestones. The benthic growth mechanism predicts petrographic characteristics that match observations: successive ooid laminae do not thin outward, laminae exhibit irregularities, and some ooids include multiple nuclei

    Contribution of Benthic Processes to the Growth of Ooids on a Low-Energy Shore in Cat Island, The Bahamas

    Get PDF
    Ooids are typically found in frequently reworked coastal sediments, and are thought to accrete by inorganic chemical precipitation around moving grains. The high organic content and the presence of biosignatures, however, suggest that ooids interact with benthic microbial communities. Here, we investigate the role of benthic processes on ooid growth on a leeward shore of Cat Island, The Bahamas. Polished ooids are present in the surf zone, whereas dull ooids and grapestones are present in microbially colonized sediments seaward of the surf zone. Wave hydrodynamics and sediment transport modeling suggest that microbially colonized sediments are mobilized at monthly time scales. We propose a new conceptual model for both ooids and grapestone. Ooids rest and accrete in the area covered by microbial mats, but are periodically transported to the surf zone where wave abrasion polishes them within days. Ooids are then transported back to microbially colonized areas where the accretion cycle resumes. Ooids too large to be transported become trapped outside the surf zone, exit the “conveyor belt” and become grapestones. The benthic growth mechanism predicts petrographic characteristics that match observations: successive ooid laminae do not thin outward, laminae exhibit irregularities, and some ooids include multiple nuclei

    Distribution of Oolitic Sediment Along a Beach-to-Offshore Transect, Pigeon Cay, Cat Island, Bahamas: New Insights Into Modern Ooid Formation

    Get PDF
    Ooids are a common component of ancient carbonate rocks, but their origin and distribution in Holocene deposits and modem carbonate sands are not fully understood. Even though ooids are well documented from several localities in the Bahamian Archipelago, their occurrence on Cat Island has not been previously studied in detail. In this study we examined the composition and texture of beach sand and six sediment samples collected from the sea floor at approximately 50-meter intervals along an estimated 300 m transect at Pigeon Cay, Cat Island

    Qualitative characterization of healthcare wastes

    Get PDF
    The biological hazard inherent in the clinical wastes should be considered during the management and treatment process as well as the disposal into the environment. In this chapter, the risks associated with the clinical wastes as well as the management of these wastes are discussed. The chapter focused on reviewing the types of healthcare wastes generated from hospitals and clinics as well as the regulations and management practices used for these wastes. Moreover, the health risk associated with the infectious agents which have the potential to be transmitted into the environment. It has appeared that the clinical wastes represent real hazards for the human health and the environment if they were not managed properly

    Experimental Preservation of Muscle Tissue in Quartz Sand and Kaolinite

    Get PDF
    Siliciclastic sediments of the Ediacaran Period contain exceptionally preserved fossils of macroscopic organisms, including three-dimensional casts and molds commonly found in sandstones and siltstones and some two-dimensional compressions reported in shales. The sporadic and variable associations of these exceptionally preserved macroscopic fossils with pyrite, clay minerals, and microbial fossils and textures complicate our understanding of fossilization processes. This hinders inferences about the evolutionary histories, tissue types, original morphologies, and lifestyles of the enigmatic Ediacara biota. Here, we investigate the delayed decay of scallop muscles buried in quartz sand or kaolinite for 45 days. This process occurs in the presence of microbial activity in mixed redox environments, but in the absence of thick, sealing microbial mats. Microbial processes that mediate organic decay and release the highest concentrations of silica and Fe(II) into the pore fluids are associated with the most extensive tissue decay. Delayed decay and the preservation of thick muscles in sand are associated with less intense microbial iron reduction and the precipitation of iron oxides and iron sulfides that contain Fe(II) or Fe(III). In contrast, muscles buried in kaolinite are coated only by <10 μm-thick clay veneers composed of kaolinite grains and newly formed K- and Fe(II)-rich aluminosilicate phases. Muscles that undergo delayed decay in kaolinite lose more mass relative to the muscles buried in sand and undergo vertical collapse. These findings show that the composition of minerals that coat or precipitate within the tissues and the vertical dimension of the preserved features can depend on the type of sediment that buries the muscles. Similar processes in the zone of oscillating redox likely facilitated the formation of exceptionally preserved macrofossils in Ediacaran siliciclastic sediments

    Decrease in expression of bone morphogenetic proteins 4 and 5 in synovial tissue of patients with osteoarthritis and rheumatoid arthritis

    Get PDF
    Bone morphogenetic proteins (BMPs) have been identified as important morphogens with pleiotropic functions in regulating the development, homeostasis and repair of various tissues. The aim of this study was to characterize the expression of BMPs in synovial tissues under normal and arthritic conditions. Synovial tissue from normal donors (ND) and from patients with osteoarthritis (OA) and rheumatoid arthritis (RA) were analyzed for BMP expression by using microarray hybridization. Differential expression of BMP-4 and BMP-5 was validated by semiquantitative RT-PCR, in situ hybridization and immunohistochemistry. Activity of arthritis was determined by routine parameters for systemic inflammation, by histological scoring of synovitis and by semiquantitative RT-PCR of IL-1β, TNF-α, stromelysin and collagenase I in synovial tissue. Expression of BMP-4 and BMP-5 mRNA was found to be significantly decreased in synovial tissue of patients with RA in comparison with ND by microarray analysis (p < 0.0083 and p < 0.0091). Validation by PCR confirmed these data in RA (p < 0.002) and also revealed a significant decrease in BMP-4 and BMP-5 expression in OA compared with ND (p < 0.015). Furthermore, histomorphological distribution of both morphogens as determined by in situ hybridization and immunohistochemistry showed a dominance in the lining layer of normal tissues, whereas chronically inflamed tissue from patients with RA revealed BMP expression mainly scattered across deeper layers. In OA, these changes were less pronounced with variable distribution of BMPs in the lining and sublining layer. BMP-4 and BMP-5 are expressed in normal synovial tissue and were found decreased in OA and RA. This may suggest a role of distinct BMPs in joint homeostasis that is disturbed in inflammatory and degenerative joint diseases. In comparison with previous reports, these data underline the complex impact of these factors on homeostasis and remodeling in joint physiology and pathology

    System Dynamics Model For Hospital Waste Characterisation and Generation in Developing Countries.

    Get PDF
    Waste management policy makers always face the problem of how to predict the future amount and composition of medical solid waste, which in turn will help determine the most appropriate treatment, recycling and disposal strategy. An accurate prediction can assist in both the planning and design of medical solid waste management systems. Insufficient budget and unavailable management capacity are the main reasons for the scarcity of medical solid waste quantities and components historical records, which are so important in long-term system planning and short-term expansion programs. This paper presents a new technique, using system dynamics modelling, to predict generated medical solid waste in a developing urban area, based on a set of limited samples from Jenin District hospitals, Palestine. The findings of the model present the trend of medical solid waste generation together with its different components and indicate that a new forecasting approach may cover a variety of possible causative models and track inevitable uncertainties when traditional statistical least-squared regression methods are unable to handle such issues
    corecore