985 research outputs found

    National survey of colistin resistance among carbapenemase-producing Enterobacteriaceae and outbreak caused by colistin-resistant OXA-48-producing Klebsiella pneumoniae, France, 2014

    Get PDF
    From January 2014 to December 2014, 972 consecutive non-replicate carbapenemase-producing Enterobacteriaceae isolates from colonised or infected patients were collected at the Associated French National Reference Centre as part of the French national survey on antimicrobial resistance. It included 577 Klebsiella spp. (59%), 236 Escherichia coli (24%), 108 Enterobacter spp. (11%), 50 Citrobacter spp. (5%), and a single Salmonella spp. isolate (0.1%). Of 561 K. pneumoniae isolates, 35 were found to be resistant to colistin (6.2%). PFGE analysis revealed a clonal outbreak involving 15 K. pneumoniae isolates belonging to sequence type ST11, recovered in a single hospital in the Picardie region in northern France. Those clonally related isolates showed variable levels of resistance to colistin, ranging from 4 to 64 mg/L. They harboured the blaOXA-48 carbapenemase gene and the blaCTX-M-15 extended-spectrum beta-lactamase gene. Among the 91 Enterobacter cloacae isolates, seven were resistant to colistin and produced different types of carbapenemases. Surprisingly, none of the E. coli and Citrobacter spp. isolates showed resistance to colistin. This national survey including carbapenemase-producing isolates recovered in 2014 reported a high rate of colistin resistance in K. pneumoniae and E. cloacae (6.2% and 7.7%, respectively) in France

    Characterization of an IncFII Plasmid Encoding NDM-1 from Escherichia coli ST131

    Get PDF
    Background: The current spread of the gene encoding the metallo-ß-lactamase NDM-1 in Enterobacteriaceae is linked to a variety of surrounding genetic structures and plasmid scaffolds. Methodology: The whole sequence of plasmid pGUE-NDM carrying the bla NDM-1 gene was determined by high-density pyrosequencing and a genomic comparative analysis with other blaNDM-1-negative IncFII was performed. Principal Findings: Plasmid pGUE-NDM replicating in Escherichia coli confers resistance to many antibiotic molecules including b-lactams, aminoglycosides, trimethoprim, and sulfonamides. It is 87,022 bp in-size and carries the two b-lactamase genes bla NDM-1 and bla OXA-1, together with three aminoglycoside resistance genes aacA4, aadA2, and aacC2. Comparative analysis of the multidrug resistance locus contained a module encompassing the blaNDM-1 gene that is actually conserved among different structures identified in other enterobacterial isolates. This module was constituted by the blaNDM-1 gene, a fragment of insertion sequence ISAba125 and a bleomycin resistance encoding gene. Significance: This is the first characterized bla NDM-1-carrying IncFII-type plasmid. Such association between the bla NDM-1 gene and an IncFII-type plasmid backbone is extremely worrisome considering that this plasmid type is known to sprea

    Rapid Detection of Polymyxin-Resistant Enterobacteriaceae from Blood Cultures.

    Get PDF
    Enterobacterial strains resistant to polymyxins are being increasingly reported worldwide. The conventional methods for detection of colistin-resistant isolates such as broth microdilution remain time-consuming (24 to 48 h), and methods such as disc diffusion and Etest are not reliable. Recently, the rapid polymyxin NP test was developed for rapid identification of polymyxin-resistant Enterobacteriaceae This test is based on the detection of glucose metabolism related to bacterial growth in the presence of a defined concentration of colistin (or polymyxin B). The formation of acid metabolites is evidenced by a color change of a pH indicator (red phenol) in less than 2 h. In this study, the polymyxin NP test was evaluated for detection of colistin-resistant Enterobacteriaceae directly from blood cultures. The test was performed with 73 blood culture sets (either spiked or clinical blood cultures) with various enterobacterial species. The test exhibited excellent discrimination between polymyxin-resistant and polymyxin-susceptible enterobacterial isolates, and results are obtained from blood cultures within 4 h. It is easy to perform and requires neither subculture nor a centrifugation step. This test is rapid, specific, and sensitive and allows early identification of polymyxin-resistant Enterobacteriaceae directly from blood cultures

    Molecular characterization of multidrug-resistance in Gram-negative bacteria from the Peshawar teaching hospital, Pakistan

    Get PDF
    Extended-spectrum β-lactamases, carbapenemases, 16S rRNA methylases conferring pan-drug aminoglycoside resistance and colistin resistance were investigated among Gram-negative bacteria recovered from clinical samples (infections) from 200 individuals hospitalized at the Khyber Teaching Hospital of Peshawar, north Pakistan, from December 2017 to March 2018. Out of 65 isolates recovered, 19% were carbapenem resistant and 16% carried a bla NDM-1 gene, confirming the widespread distribution of NDM producers in this country. The association of the NDM carbapenem-resistance determinant, together with the extended-spectrum β-lactamase CTX-M-15 and 16S rRNA methylases, was frequent, explaining the multidrug-resistance pattern observed. All isolates remained susceptible to colistin

    MCR: modern colistin resistance

    Get PDF
    Recently, plasmid-mediated and, therefore, transferable bacterial polymyxin resistance was discovered in strains from both humans and animals. Such a trait may widely spread geographically, while simultaneously crossing microbial species barriers. This may ultimately render the “last resort” polymyxin antibiotics therapeutically useless. Colistin is currently used to treat infections caused by Gram-negative carbapenemase producers and colistin resistance may lead to practical pan-antibiotic resistance. We here analyzed the medical and diagnostic consequences of (emerging) colistin resistance and propose pathways toward adequate diagnostics for timely detection of both asymptomatic carriage and infection. Culture-based testing using chromogenic and selective media for screening clinical (and veterinary) specimens may constitute key tools for that purpose. Relevant molecular tests are also discussed

    Characterization of CTX-M ESBLs in Enterobacter cloacae, Escherichia coli and Klebsiella pneumoniae clinical isolates from Cairo, Egypt

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A high rate of resistance to 3<sup>rd </sup>generation cephalosporins among Enterobacteriaceae isolates from Egypt has been previously reported. This study aims to characterize the resistance mechanism (s) to extended spectrum cephalosporins among resistant clinical isolates at a medical institute in Cairo, Egypt.</p> <p>Methods</p> <p>Nonconsecutive <it>Klebsiella pneumoniae </it>(Kp), <it>Enterobacter cloacae </it>(ENT) and <it>Escherichia coli </it>(EC) isolates were obtained from the clinical laboratory at the medical institute. Antibiotic susceptibility was tested by CLSI disk diffusion and ESBL confirmatory tests. MICs were determined using broth microdilution. Isoelectric focusing (IEF) was used to determine the pI values, inhibitor profiles, and cefotaxime (CTX) hydrolysis by the β-lactamases. PCR and sequencing were performed using <it>bla</it><sub>CTX-M </sub>and IS<it>Ecp1</it>-specific primers, with DNA obtained from the clinical isolates. Conjugation experiments were done to determine the mobility of <it>bla</it><sub>CTX-M</sub>.</p> <p>Results</p> <p>All five clinical isolates were resistant to CTX, and were positive for ESBL screening. IEF revealed multiple β-lactamases produced by each isolate, including a β-lactamase with a pI of 8.0 in Kp and ENT and a β-lactamase with a pI of 9.0 in EC. Both β-lactamases were inhibited by clavulanic acid and hydrolyzed CTX. PCR and sequence analysis identified <it>bla</it><sub>CTX-M-14 </sub>in Kp and ENT and a <it>bla</it><sub>CTX-M-15 </sub>in EC. Both <it>bla</it><sub>CTX-M-14 </sub>and <it>bla</it><sub>CTX-M-15 </sub>were preceded by IS<it>Ecp1 </it>elements as revealed by partial sequence analysis of the upstream region of the <it>bla</it><sub>CTX-M </sub>genes. <it>bla</it><sub>CTX-M-15</sub> was transferable but not <it>bla</it><sub>CTX-M-14</sub>.</p> <p>Conclusion</p> <p>This is the first report of CTX-M-14 in Kp and ENT isolates from Egypt, the Middle East and North Africa.</p

    Carbapenemase-producing organisms: a global scourge

    Get PDF
    The dramatic increase in the prevalence and clinical impact of infections caused by bacteria producing carbapenemases is a global health concern. Carbapenemase production is especially problematic when encountered in members of the family Enterobacteriaceae. Due to their ability to readily spread and colonize patients in healthcare environments, preventing the transmission of these organisms is a major public health initiative and coordinated international effort are needed. Central to the treatment and control of carbapenemase-producing organisms (CPOs) are phenotypic (growth-/biochemical-dependent) and nucleic acid–based carbapenemase detection tests that identify carbapenemase activity directly or their associated molecular determinants. Importantly, bacterial isolates harboring carbapenemases are often resistant to multiple antibiotic classes, resulting in limited therapy options. Emerging agents, novel antibiotic combinations and treatment regimens offer promise for management of these infections. This review highlights our current understanding of CPOs with emphasis on their epidemiology, detection, treatment, and control

    Molecular detection of blaVEB-1 beta-lactamase encoding gene among extended spectrum B-Lactamase positive wound isolates of Pseudomonas aeruginosa

    Get PDF
    Background: Pseudomonas aeruginosa is considered as a leading cause of nosocomial infections. Burn and wound infections are mainly caused by multidrug-resistant P. aeruginosa isolates. Drug resistance frequently occurs among nosocomial isolates and can usually resist a myriad of antibiotics such as novel β-lactam antibiotics. Detection of multidrug-resistant isolates could assist better drug administration. Objectives: The aim of this study was to detect Extended Spectrum Beta-Lactamases (ESBL) positive wound isolates and the genes encoding blaVEB-1 ESBL among wound isolates of P. aeruginosa. Materials and Methods: A total of 89 wound isolates of P. aeruginosa were collected from patients (47 (n = 42) were male and 53 (n = 47) were female) at six Iranian hospitals between years 2009 and 2011. Antibiotic susceptibility and phenotypic ESBL production tests were conducted. The combined disk was used to determine ESBLs production. The blaVEB-1 gene was detected with the polymerase chain reaction (PCR). Results: The majority of the wound isolates were resistant to augmentin (90, n = 80) and cefpodoxime (87.6, n = 78). However, the majority was susceptible to imipenem and meropenem. Fifty-eight (42) wound isolates were ESBL positive. The antibiotic resistance amongst ESBL positive isolates was relatively higher than ESBL negative isolates. Twenty-three (40) ESBL-positive isolates amplified the blaVEB-1 gene. Conclusions: More than behalf of the wound isolates were ESBL positive, and the presence of blaVEB-1 was determined in less than half of these isolates. Fortunately, resistance to imipenem and meropenem was low. © 2015 Pediartric Infections Research Center
    corecore