377 research outputs found

    Notitser om det skotske Agerbrug. (En Rejseberetning til det kgl. Landhusholdningsselskab).

    Get PDF
    Notitser om det skotske Agerbrug. (En Rejseberetning til det kgl. Landhusholdningsselskab)

    Dirac Hamiltonian with superstrong Coulomb field

    Full text link
    We consider the quantum-mechanical problem of a relativistic Dirac particle moving in the Coulomb field of a point charge ZeZe. In the literature, it is often declared that a quantum-mechanical description of such a system does not exist for charge values exceeding the so-called critical charge with Z=α−1=137% Z=\alpha ^{-1}=137 based on the fact that the standard expression for the lower bound state energy yields complex values at overcritical charges. We show that from the mathematical standpoint, there is no problem in defining a self-adjoint Hamiltonian for any value of charge. What is more, the transition through the critical charge does not lead to any qualitative changes in the mathematical description of the system. A specific feature of overcritical charges is a non uniqueness of the self-adjoint Hamiltonian, but this non uniqueness is also characteristic for charge values less than the critical one (and larger than the subcritical charge with Z=(3−1=118Z=(\sqrt{3}% /2)\alpha ^{-1}=118). We present the spectra and (generalized) eigenfunctions for all self-adjoint Hamiltonians. The methods used are the methods of the theory of self-adjoint extensions of symmetric operators and the Krein method of guiding functionals. The relation of the constructed one-particle quantum mechanics to the real physics of electrons in superstrong Coulomb fields where multiparticle effects may be of crucial importance is an open question.Comment: 44 pages, LaTex file, to be published in Teor.Mat.Fiz. (Theor.Math.Phys.

    Time-resolved studies define the nature of toxic IAPP intermediates, providing insight for anti-amyloidosis therapeutics

    Get PDF
    Islet amyloidosis by IAPP contributes to pancreatic β-cell death in diabetes, but the nature of toxic IAPP species remains elusive. Using concurrent time-resolved biophysical and biological measurements, we define the toxic species produced during IAPP amyloid formation and link their properties to induction of rat INS-1 β-cell and murine islet toxicity. These globally flexible, low order oligomers upregulate pro-inflammatory markers and induce reactive oxygen species. They do not bind 1-anilnonaphthalene-8-sulphonic acid and lack extensive β-sheet structure. Aromatic interactions modulate, but are not required for toxicity. Not all IAPP oligomers are toxic; toxicity depends on their partially structured conformational states. Some anti-amyloid agents paradoxically prolong cytotoxicity by prolonging the lifetime of the toxic species. The data highlight the distinguishing properties of toxic IAPP oligomers and the common features that they share with toxic species reported for other amyloidogenic polypeptides, providing information for rational drug design to treat IAPP induced β-cell death

    Genetic determinants of co-accessible chromatin regions in activated T cells across humans.

    Get PDF
    Over 90% of genetic variants associated with complex human traits map to non-coding regions, but little is understood about how they modulate gene regulation in health and disease. One possible mechanism is that genetic variants affect the activity of one or more cis-regulatory elements leading to gene expression variation in specific cell types. To identify such cases, we analyzed ATAC-seq and RNA-seq profiles from stimulated primary CD4+ T cells in up to 105 healthy donors. We found that regions of accessible chromatin (ATAC-peaks) are co-accessible at kilobase and megabase resolution, consistent with the three-dimensional chromatin organization measured by in situ Hi-C in T cells. Fifteen percent of genetic variants located within ATAC-peaks affected the accessibility of the corresponding peak (local-ATAC-QTLs). Local-ATAC-QTLs have the largest effects on co-accessible peaks, are associated with gene expression and are enriched for autoimmune disease variants. Our results provide insights into how natural genetic variants modulate cis-regulatory elements, in isolation or in concert, to influence gene expression

    Diffusion of an e-learning programme among Danish General Practitioners: A nation-wide prospective survey

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We were unable to identify studies that have considered the diffusion of an e-learning programme among a large population of general practitioners. The aim of this study was to investigate the uptake of an e-learning programme introduced to General Practitioners as part of a nation-wide disseminated dementia guideline.</p> <p>Methods</p> <p>A prospective study among all 3632 Danish GPs. The GPs were followed from the launching of the e-learning programme in November 2006 and 6 months forward. Main outcome measures: Use of the e-learning programme. A logistic regression model (GEE) was used to identify predictors for use of the e-learning programme.</p> <p>Results</p> <p>In the study period, a total of 192 different GPs (5.3%) were identified as users, and 17% (32) had at least one re-logon. Among responders at first login most have learnt about the e-learning programme from written material (41%) or from the internet (44%). A total of 94% of the users described their ability of conducting a diagnostic evaluation as good or excellent. Most of the respondents used the e-learning programme due to general interest (90%). Predictors for using the e-learning programme were Males (OR = 1.4, 95% CI 1.1; 2.0) and members of Danish College of General Practice (OR = 2.2, 95% CI 1.5; 3.1), whereas age, experience and working place did not seem to be influential.</p> <p>Conclusion</p> <p>Only few Danish GPs used the e-learning programme in the first 6 months after the launching. Those using it were more often males and members of Danish College of General Practice. Based on this study we conclude, that an active implementation is needed, also when considering electronic formats of CME like e-learning.</p> <p>Trial Registration</p> <p>ClinicalTrials.gov Identifier: NCT00392483.</p

    Phase 1/2 study of daratumumab, lenalidomide, and dexamethasone for relapsed multiple myeloma

    Get PDF
    Daratumumab, a human CD38 immunoglobulin G1 kappa (IgG1κ) monoclonal antibody, has activity as monotherapy in multiple myeloma (MM). This phase 1/2 study investigated daratumumab plus lenalidomide/dexamethasone in refractory and relapsed/refractory MM. Part 1 (dose escalation) evaluated 4 daratumumab doses plus lenalidomide (25 mg/day orally on days 1-21 of each cycle) and dexamethasone (40 mg/week). Part 2 (dose expansion) evaluated daratumumab at the recommended phase 2 dose (RP2D) plus lenalidomide/dexamethasone. Safety, efficacy, pharmacokinetics, immunogenicity, and accelerated daratumumab infusions were studied. In part 1 (13 patients), no dose-limiting toxicities were observed, and 16 mg/kg was selected as the R2PD. In part 2 (32 patients), median time since diagnosis was 3.2 years, with a median of 2 prior therapies (range, 1-3 prior therapies), including proteasome inhibitors (91%), alkylating agents (91%), autologous stem cell transplantation (78%), thalidomide (44%), and lenalidomide (34%); 22% of patients were refractory to the last line of therapy. Grade 3 to 4 adverse events (≥5%) included neutropenia, thrombocytopenia, and anemia. In part 2, infusion-related reactions (IRRs) occurred in 18 patients (56%); most were grade ≤2 (grade 3, 6.3%). IRRs predominantly occurred during first infusions and were more common during accelerated infusions. In part 2 (median follow-up of 15.6 months), overall response rate was 81%, with 8 stringent complete responses (25%), 3 complete responses (9%), and 9 very good partial responses (28%). Eighteen-month progression-free and overall survival rates were 72% (95% confidence interval, 51.7-85.0) and 90% (95% confidence interval, 73.1-96.8), respectively. Daratumumab plus lenalidomide/dexamethasone resulted in rapid, deep, durable responses. The combination was well tolerated and consistent with the safety profiles observed with lenalidomide/dexamethasone or daratumumab monotherapy. This trial was registered at www.clinicaltrials.gov as #NCT01615029

    Genome-wide protein QTL mapping identifies human plasma kallikrein as a post-translational regulator of serum uPAR levels

    Get PDF
    The soluble cleaved urokinase plasminogen activator receptor (scuPAR) is a circulating protein detected in multiple diseases, including various cancers, cardiovascular disease, and kidney disease, where elevated levels of scuPAR have been associated with worsening prognosis and increased disease aggressiveness. We aimed to identify novel genetic and biomolecular mechanisms regulating scuPAR levels. Elevated serum scuPAR levels were identified in asthma (n=514) and chronic obstructive pulmonary disease (COPD; n=219) cohorts when compared to controls (n=96). In these cohorts, a genome-wide association study of serum scuPAR levels identified a human plasma kallikrein gene (KLKB1) promoter polymorphism (rs4253238) associated with serum scuPAR levels in a control/asthma population (P=1.17×10−7), which was also observed in a COPD population (combined P=5.04×10−12). Using a fluorescent assay, we demonstrated that serum KLKB1 enzymatic activity was driven by rs4253238 and is inverse to scuPAR levels. Biochemical analysis identified that KLKB1 cleaves scuPAR and negates scuPAR's effects on primary human bronchial epithelial cells (HBECs) in vitro. Chymotrypsin was used as a proproteolytic control, while basal HBECs were used as a control to define scuPAR-driven effects. In summary, we reveal a novel post-translational regulatory mechanism for scuPAR using a hypothesis-free approach with implications for multiple human diseases

    Antibody-drug conjugate targeting CD46 eliminates multiple myeloma cells

    Get PDF
    Multiple myeloma is incurable by standard approaches because of inevitable relapse and development of treatment resistance in all patients. In our prior work, we identified a panel of macropinocytosing human monoclonal antibodies against CD46, a negative regulator of the innate immune system, and constructed antibody-drug conjugates (ADCs). In this report, we show that an anti-CD46 ADC (CD46-ADC) potently inhibited proliferation in myeloma cell lines with little effect on normal cells. CD46-ADC also potently eliminated myeloma growth in orthometastatic xenograft models. In primary myeloma cells derived from bone marrow aspirates, CD46-ADC induced apoptosis and cell death, but did not affect the viability of nontumor mononuclear cells. It is of clinical interest that the CD46 gene resides on chromosome 1q, which undergoes genomic amplification in the majority of relapsed myeloma patients. We found that the cell surface expression level of CD46 was markedly higher in patient myeloma cells with 1q gain than in those with normal 1q copy number. Thus, genomic amplification of CD46 may serve as a surrogate for target amplification that could allow patient stratification for tailored CD46-targeted therapy. Overall, these findings indicate that CD46 is a promising target for antibody-based treatment of multiple myeloma, especially in patients with gain of chromosome 1q

    RAGE binds preamyloid IAPP intermediates and mediates pancreatic beta cell proteotoxicity

    Get PDF
    Islet amyloidosis is characterized by the aberrant accumulation of islet amyloid polypeptide (IAPP) in pancreatic islets, resulting in β cell toxicity, which exacerbates type 2 diabetes and islet transplant failure. It is not fully clear how IAPP induces cellular stress or how IAPP-induced toxicity can be prevented or treated. We recently defined the properties of toxic IAPP species. Here, we have identified a receptor-mediated mechanism of islet amyloidosis–induced proteotoxicity. In human diabetic pancreas and in cellular and mouse models of islet amyloidosis, increased expression of the receptor for advanced glycation endproducts (RAGE) correlated with human IAPP–induced (h-IAPP–induced) β cell and islet inflammation, toxicity, and apoptosis. RAGE selectively bound toxic intermediates, but not nontoxic forms of h-IAPP, including amyloid fibrils. The isolated extracellular ligand–binding domains of soluble RAGE (sRAGE) blocked both h-IAPP toxicity and amyloid formation. Inhibition of the interaction between h-IAPP and RAGE by sRAGE, RAGE-blocking antibodies, or genetic RAGE deletion protected pancreatic islets, β cells, and smooth muscle cells from h-IAPP–induced inflammation and metabolic dysfunction. sRAGE-treated h-IAPP Tg mice were protected from amyloid deposition, loss of β cell area, β cell inflammation, stress, apoptosis, and glucose intolerance. These findings establish RAGE as a mediator of IAPP-induced toxicity and suggest that targeting the IAPP/RAGE axis is a potential strategy to mitigate this source of β cell dysfunction in metabolic disease
    • …
    corecore