687 research outputs found
Azimuthal correlation between the and planes in the semileptonic rest frame decay of a polarized top quark: An effect
The azimuthal correlation between the planes formed by the vectors
and in the
semileptonic rest frame decay of a polarized top quark belongs to a class of polarization observables involving the
top quark which vanish at the Born term level in the standard model. We
determine the next--to--leading order QCD corrections to the afore-mentioned
azimuthal correlation and compare the result to the corresponding contribution
of a non--standard--model right--chiral quark current.Comment: latex, 12 pages with 2 figures in the text, typos removed,comment and
references added, replaced with published versio
Hepatitis C virus cell-cell transmission and resistance to direct-acting antiviral agents
Hepatitis C virus (HCV) is transmitted between hepatocytes via classical cell entry but also uses direct cell-cell transfer to infect neighboring hepatocytes. Viral cell-cell transmission has been shown to play an important role in viral persistence allowing evasion from neutralizing antibodies. In contrast, the role of HCV cell-cell transmission for antiviral resistance is unknown. Aiming to address this question we investigated the phenotype of HCV strains exhibiting resistance to direct-acting antivirals (DAAs) in state-of-the-art model systems for cell-cell transmission and spread. Using HCV genotype 2 as a model virus, we show that cell-cell transmission is the main route of viral spread of DAA-resistant HCV. Cell-cell transmission of DAA-resistant viruses results in viral persistence and thus hampers viral eradication. We also show that blocking cell-cell transmission using host-targeting entry inhibitors (HTEIs) was highly effective in inhibiting viral dissemination of resistant genotype 2 viruses. Combining HTEIs with DAAs prevented antiviral resistance and led to rapid elimination of the virus in cell culture model. In conclusion, our work provides evidence that cell-cell transmission plays an important role in dissemination and maintenance of resistant variants in cell culture models. Blocking virus cell-cell transmission prevents emergence of drug resistance in persistent viral infection including resistance to HCV DAAs
Helicity Analysis of Semileptonic Hyperon Decays Including Lepton Mass Effects
Using the helicity method we derive complete formulas for the joint angular
decay distributions occurring in semileptonic hyperon decays including lepton
mass and polarization effects. Compared to the traditional covariant
calculation the helicity method allows one to organize the calculation of the
angular decay distributions in a very compact and efficient way. In the
helicity method the angular analysis is of cascade type, i.e. each decay in the
decay chain is analyzed in the respective rest system of that particle. Such an
approach is ideally suited as input for a Monte Carlo event generation program.
As a specific example we take the decay () followed by the nonleptonic decay for which we show a few examples of decay distributions which are
generated from a Monte Carlo program based on the formulas presented in this
paper. All the results of this paper are also applicable to the semileptonic
and nonleptonic decays of ground state charm and bottom baryons, and to the
decays of the top quark.Comment: Published version. 40 pages, 11 figures included in the text. Typos
corrected, comments added, references added and update
Meson Decay Constants from Isospin Mass Splittings in the Quark Model
Decay constants of and mesons are estimated within the framework of a
heavy-quark approach using measured isospin mass splittings in the , ,
and states to isolate the electromagnetic hyperfine interaction between
quarks. The values MeV and MeV are
obtained. Only experimental errors are given; possible theoretical ambiguities,
and suggestions for reducing them, are noted.Comment: 7 pages, LaTeX, EFI-92-3
Pair production of neutralinos via gluon-gluon collisions
The production of a neutralino pair via gluon-gluon fusion is studied in the
minimal supersymmetric model(MSSM) at proton-proton colliders. The numerical
analysis of their production rates are carried out in the mSUGRA scenario. The
results show that this cross section may reach about 80 femto barn for
pair production and 23 femto barn
for pair production with suitable
input parameters at the future LHC collider. It shows that this loop mediated
process can be competitive with the quark-antiquark annihilation process at the
LHC.Comment: LaTex file, l4 pages, 5 EPS figure
Mutation analysis of BRCA1 and BRCA2 genes in Iranian high risk breast cancer families
Background: Telomerase is a ribonucleoprotein enzyme that synthesises telomeres after cell
division and maintains chromosomal stability leading to cellular immortalization. Telomerase has
been associated with negative prognostic indicators in some studies. The present study aims to
detect any association between telomerase sub-units: hTERT and hTR and the prognostic
indicators including tumour's size and grade, nodal status and patient's age.
Methods: Tumour samples from 46 patients with primary invasive breast cancer and 3 patients
with benign tumours were collected. RT-PCR analysis was used for the detection of hTR, hTERT,
and PGM1 (as a housekeeping) genes expression.
Results: The expression of hTR and hTERT was found in 31(67.4%) and 38 (82.6%) samples
respectively. We observed a significant association between hTR gene expression and younger age
at diagnosis (p = 0.019) when comparing patients ≤ 40 years with those who are older than 40
years. None of the benign tumours expressed hTR gene. However, the expression of hTERT gene
was revealed in 2 samples.
No significant association between hTR and hTERT expression and tumour's grade, stage and nodal
status was seen.
Conclusion: The expression of hTR and hTERT seems to be independent of tumour's stage. hTR
expression probably plays a greater role in mammary tumourogenesis in younger women (≤ 40
years) and this may have therapeutic implications in the context of hTR targeting strategies
Recommended from our members
Expanding the host range of hepatitis C virus through viral adaptation
Hepatitis C virus (HCV) species tropism is incompletely understood. We have previously shown that at the level of entry, human CD81 and occludin (OCLN) comprise the minimal set of human factors needed for viral uptake into murine cells. As an alternative approach to genetic humanization, species barriers can be overcome by adapting HCV to use the murine orthologues of these entry factors. We previously generated a murine tropic HCV (mtHCV or Jc1/mCD81) strain harboring three mutations within the viral envelope proteins that allowed productive entry into mouse cell lines. In this study, we aimed to characterize the ability of mtHCV to enter and infect mouse hepatocytes in vivo and in vitro Using a highly sensitive, Cre-activatable reporter, we demonstrate that mtHCV can enter mouse hepatocytes in vivo in the absence of any human cofactors. Viral entry still relied on expression of mouse CD81 and SCARB1 and was more efficient when mouse CD81 and OCLN were overexpressed. HCV entry could be significantly reduced in the presence of anti-HCV E2 specific antibodies, suggesting that uptake of mtHCV is dependent on viral glycoproteins. Despite mtHCV's ability to enter murine hepatocytes in vivo, we did not observe persistent infection, even in animals with severely blunted type I and III interferon signaling and impaired adaptive immune responses. Altogether, these results establish proof of concept that the barriers limiting HCV species tropism can be overcome by viral adaptation. However, additional viral adaptations will likely be needed to increase the robustness of a murine model system for hepatitis C. IMPORTANCE: At least 150 million individuals are chronically infected with HCV and are at risk of developing serious liver disease. Despite the advent of effective antiviral therapy, the frequency of chronic carriers has only marginally decreased. A major roadblock in developing a vaccine that would prevent transmission is the scarcity of animal models that are susceptible to HCV infection. It is poorly understood why HCV infects only humans and chimpanzees. To develop an animal model for hepatitis C, previous efforts focused on modifying the host environment of mice, for example, to render them more susceptible to HCV infection. Here, we attempted a complementary approach in which a laboratory-derived HCV variant was tested for its ability to infect mice. We demonstrate that this engineered HCV strain can enter mouse liver cells but does not replicate efficiently. Thus, additional adaptations are likely needed to construct a robust animal model for HCV
Characterisation of the Immunophenotype of Dogs with Primary Immune-Mediated Haemolytic Anaemia
Immune-mediated haemolytic anaemia (IMHA) is reported to be the most common autoimmune disease of dogs, resulting in significant morbidity and mortality in affected animals. Haemolysis is caused by the action of autoantibodies, but the immunological changes that result in their production have not been elucidated.To investigate the frequency of regulatory T cells (Tregs) and other lymphocyte subsets and to measure serum concentrations of cytokines and peripheral blood mononuclear cell expression of cytokine genes in dogs with IMHA, healthy dogs and dogs with inflammatory diseases.19 dogs with primary IMHA, 22 dogs with inflammatory diseases and 32 healthy control dogs.Residual EDTA-anti-coagulated blood samples were stained with fluorophore-conjugated monoclonal antibodies and analysed by flow cytometry to identify Tregs and other lymphocyte subsets. Total RNA was also extracted from peripheral blood mononuclear cells to investigate cytokine gene expression, and concentrations of serum cytokines (interleukins 2, 6 10, CXCL-8 and tumour necrosis factor α) were measured using enhanced chemiluminescent assays. Principal component analysis was used to investigate latent variables that might explain variability in the entire dataset.There was no difference in the frequency or absolute numbers of Tregs among groups, nor in the proportions of other lymphocyte subsets. The concentrations of pro-inflammatory cytokines were greater in dogs with IMHA compared to healthy controls, but the concentration of IL-10 and the expression of cytokine genes did not differ between groups. Principal component analysis identified four components that explained the majority of the variability in the dataset, which seemed to correspond to different aspects of the immune response.The immunophenotype of dogs with IMHA differed from that of dogs with inflammatory diseases and from healthy control dogs; some of these changes could suggest abnormalities in peripheral tolerance that permit development of autoimmune disease. The frequency of Tregs did not differ between groups, suggesting that deficiency in the number of these cells is not responsible for development of IMHA
Human neutrophil clearance of bacterial pathogens triggers anti-microbial gamma delta T cell responses in early infection
Human blood Vc9/Vd2 T cells, monocytes and neutrophils share a responsiveness toward inflammatory chemokines and are rapidly recruited to sites of infection. Studying their interaction in vitro and relating these findings to in vivo observations in patients may therefore provide crucial insight into inflammatory events. Our present data demonstrate that Vc9/Vd2 T cells provide potent survival signals resulting in neutrophil activation and the release of the neutrophil chemoattractant CXCL8 (IL-8). In turn, Vc9/Vd2 T cells readily respond to neutrophils harboring phagocytosed bacteria, as evidenced by expression of CD69, interferon (IFN)-c and tumor necrosis factor (TNF)-a. This response is dependent on the ability of these bacteria to produce the microbial metabolite (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMB-PP), requires cell-cell contact of Vc9/Vd2 T cells with accessory monocytes through lymphocyte function-associated antigen-1 (LFA-1), and results in a TNF-a dependent proliferation of Vc9/Vd2 T cells. The antibiotic fosmidomycin, which targets the HMB-PP biosynthesis pathway, not only has a direct antibacterial effect on most HMB-PP producing bacteria but also possesses rapid anti-inflammatory properties by inhibiting cd T cell responses in vitro. Patients with acute peritoneal-dialysis (PD)-associated bacterial peritonitis – characterized by an excessive influx of neutrophils and monocytes into the peritoneal cavity – show a selective activation of local Vc9/Vd2 T cells by HMB-PP producing but not by HMB-PP deficient bacterial pathogens. The cd T celldriven perpetuation of inflammatory responses during acute peritonitis is associated with elevated peritoneal levels of cd T cells and TNF-a and detrimental clinical outcomes in infections caused by HMB-PP positive microorganisms. Taken together, our findings indicate a direct link between invading pathogens, neutrophils, monocytes and microbe-responsive cd T cells in early infection and suggest novel diagnostic and therapeutic approaches.Martin S. Davey, Chan-Yu Lin, Gareth W. Roberts, Sinéad Heuston, Amanda C. Brown, James A. Chess, Mark A. Toleman, Cormac G.M. Gahan, Colin Hill, Tanya Parish, John D. Williams, Simon J. Davies, David W. Johnson, Nicholas Topley, Bernhard Moser and Matthias Eber
- …
