155 research outputs found

    SafeWeb: A Middleware for Securing Ruby-Based Web Applications

    Get PDF
    Web applications in many domains such as healthcare and finance must process sensitive data, while complying with legal policies regarding the release of different classes of data to different parties. Currently, software bugs may lead to irreversible disclosure of confidential data in multi-tier web applications. An open challenge is how developers can guarantee these web applications only ever release sensitive data to authorised users without costly, recurring security audits. Our solution is to provide a trusted middleware that acts as a “safety net” to event-based enterprise web applications by preventing harmful data disclosure before it happens. We describe the design and implementation of SafeWeb, a Ruby-based middleware that associates data with security labels and transparently tracks their propagation at different granularities across a multi-tier web architecture with storage and complex event processing. For efficiency, maintainability and ease-of-use, SafeWeb exploits the dynamic features of the Ruby programming language to achieve label propagation and data flow enforcement. We evaluate SafeWeb by reporting our experience of implementing a web-based cancer treatment application and deploying it as part of the UK National Health Service (NHS)

    Biological evaluation of new vitamin D2 analogues

    Get PDF
    Abstract1,25-dihydroxyvitamin D3 (1,25D), a steroid hormone which regulates calcium/phosphate homeostasis, has a broad spectrum of anti-cancer activities, including differentiation of acute myeloid leukemia (AML) cells. In order to avoid undesirable side effects such as hypercalcemia, low-calcemic analogues should be produced for therapeutic purposes. In this paper, we describe biological activities of double-point modified analogues of vitamin D2 and we compare them to 1,25D and to paricalcitol, the drug used to treat secondary hyperparathyroidism. In vivo, our new analogues have lower calcemic effects, and lower toxicity in comparison to 1,25D. They have enhanced pro-differentiating and transcription-inducing activities in AML cells. Interestingly, differentiation effects do not correlate with the affinities of the analogues to the vitamin D receptor (VDR)

    The interaction of vasoactive substances during exercise modulates platelet aggregation in hypertension and coronary artery disease

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Acute vigorous exercise, associated with increased release of plasma catecholamines, transiently increases the risk of primary cardiac arrest. We tested the effect of acute submaximal exercise on vasoactive substances and their combined result on platelet function.</p> <p>Methods</p> <p>Healthy volunteers, hypertensive patients and patients with coronary artery disease (CAD) performed a modified treadmill exercise test. We determined plasma catecholamines, thromboxane A<sub>2</sub>, prostacyclin, endothelin-1 and platelet aggregation induced by adenosine diphosphate (ADP) and collagen at rest and during exercise.</p> <p>Results</p> <p>Our results during exercise showed a) platelet activation (increased thromboxane B<sub>2</sub>, TXB<sub>2</sub>), b) increased prostacyclin release from endothelium and c) decreased platelet aggregation in all groups, significantly more in healthy volunteers than in patients with CAD (with hypertensives lying in between these two groups).</p> <p>Conclusion</p> <p>Despite the pronounced activation of Sympathetic Nervous System (SNS) and increased TXB<sub>2 </sub>levels during acute exercise platelet aggregation decreases, possibly to counterbalance the prothrombotic state. Since this effect seems to be mediated by the normal endothelium (through prostacyclin and nitric oxide), in conditions characterized by endothelial dysfunction (hypertension, CAD) reduced platelet aggregation is attenuated, thus posing such patients in increased risk for thrombotic complications.</p

    Effect of Adjunct Metformin Treatment in Patients with Type-1 Diabetes and Persistent Inadequate Glycaemic Control. A Randomized Study

    Get PDF
    Despite intensive insulin treatment, many patients with type-1 diabetes (T1DM) have longstanding inadequate glycaemic control. Metformin is an oral hypoglycaemic agent that improves insulin action in patients with type-2 diabetes. We investigated the effect of a one-year treatment with metformin versus placebo in patients with T1DM and persistent poor glycaemic control.One hundred patients with T1DM, preserved hypoglycaemic awareness and HaemoglobinA(1c) (HbA(1c)) > or = 8.5% during the year before enrolment entered a one-month run-in on placebo treatment. Thereafter, patients were randomized (baseline) to treatment with either metformin (1 g twice daily) or placebo for 12 months (double-masked). Patients continued ongoing insulin therapy and their usual outpatient clinical care. The primary outcome measure was change in HbA(1c) after one year of treatment. At enrolment, mean (standard deviation) HbA(1c) was 9.48% (0.99) for the metformin group (n = 49) and 9.60% (0.86) for the placebo group (n = 51). Mean (95% confidence interval) baseline-adjusted differences after 12 months with metformin (n = 48) versus placebo (n = 50) were: HbA(1c), 0.13% (-0.19; 0.44), p = 0.422; Total daily insulin dose, -5.7 U/day (-8.6; -2.9), p<0.001; body weight, -1.74 kg (-3.32; -0.17), p = 0.030. Minor and overall major hypoglycaemia was not significantly different between treatments. Treatments were well tolerated.In patients with poorly controlled T1DM, adjunct metformin therapy did not provide any improvement of glycaemic control after one year. Nevertheless, adjunct metformin treatment was associated with sustained reductions of insulin dose and body weight. Further investigations into the potential cardiovascular-protective effects of metformin therapy in patients with T1DM are warranted.ClinicalTrials.gov NCT00118937

    Interactive effects of mGlu5 and 5-HT2A receptors on locomotor activity in mice

    Get PDF
    RationaleMetabotropic glutamate (mGlu) receptors have been suggested to play a role in neuropsychiatric disorders including schizophrenia, drug abuse, and depression. Because serotonergic hallucinogens increase glutamate release and mGlu receptors modulate the response to serotonin (5-HT)(2A) activation, the interactions between serotonin 5-HT(2A) receptors and mGlu receptors may prove to be important for our understanding of these diseases.ObjectiveWe tested the effects of the serotonergic hallucinogen and 5-HT(2A) agonist, 2,5-dimethoxy-4-methylamphetamine (DOM), and the selective 5-HT(2A) antagonist, M100907, on locomotor activity in the mouse behavioral pattern monitor (BPM) in mGlu5 wild-type (WT) and knockout (KO) mice on a C57 background.ResultsBoth male and female mGlu5 KO mice showed locomotor hyperactivity and diminished locomotor habituation compared with their WT counterparts. Similarly, the mGlu5-negative allosteric modulator 2-methyl-6-(phenylethynyl)pyridine (MPEP) also increased locomotor hyperactivity, which was absent in mGlu5 KO mice. The locomotor hyperactivity in mGlu5 receptor KO mice was potentiated by DOM (0.5 mg/kg, subcutaneously (SC)) and attenuated by M100907 (1.0 mg/kg, SC). M100907 (0.1 mg/kg, SC) also blocked the hyperactivity induced by MPEP.ConclusionsThese studies demonstrated that loss of mGlu5 receptor activity either pharmacologically or through gene deletion leads to locomotor hyperactivity in mice. Additionally, the gene deletion of mGlu5 receptors increased the behavioral response to the 5-HT(2A) agonist DOM, suggesting that mGlu5 receptors either mitigate the behavioral effects of 5-HT(2A) hallucinogens or that mGlu5 KO mice show an increased sensitivity to 5-HT(2A) agonists. Taken together, these studies indicate a functional interaction between mGlu5 and 5-HT(2A) receptors

    Lesion of the Cerebellar Noradrenergic Innervation Enhances the Harmaline-Induced Tremor in Rats

    Get PDF
    Abnormal synchronous activation of the glutamatergic olivo-cerebellar pathway has been suggested to be crucial for the harmaline-induced tremor. The cerebellum receives two catecholaminergic pathways: the dopaminergic pathway arising from the ventral tegmental area/substantia nigra pars compacta, and the noradrenergic one from the locus coeruleus. The aim of the present study was to examine a contribution of the cerebellar catecholaminergic innervations to the harmaline-induced tremor in rats. Rats were injected bilaterally into the cerebellar vermis with 6-hydroxydopamine (6-OHDA; 8 μg/0.5 μl) either alone or this treatment was preceded (30 min earlier) by desipramine (15 mg/kg ip). Harmaline was administered to animals in doses of 7.5 or 15 mg/kg ip. Tremor of forelimbs was measured as a number of episodes during a 90-min observation. Rats were killed by decapitation 30 or 120 min after harmaline treatment. The levels of dopamine, noradrenaline, serotonin, and their metabolites were measured by HPLC in the cerebellum, substantia nigra, caudate–putamen, and frontal cortex. 6-OHDA injected alone enhanced the harmaline-induced tremor. Furthermore, it decreased the noradrenaline level by ca. 40–80% in the cerebellum and increased the levels of serotonin and 5-HIAA in the caudate–putamen and frontal cortex in untreated and/or harmaline-treated animals. When 6-OHDA treatment was preceded by desipramine, it decreased dopaminergic transmission in some regions of the cerebellum while inducing its compensatory activation in others. The latter lesion did not markedly influence the tremor induced by harmaline. The present study indicates that noradrenergic innervation of the cerebellum interacts with cerebral serotonergic systems and plays an inhibitory role in the harmaline-induced tremor

    Selective mGluR1 Antagonist EMQMCM Inhibits the Kainate-Induced Excitotoxicity in Primary Neuronal Cultures and in the Rat Hippocampus

    Get PDF
    Abundant evidence suggests that indirect inhibitory modulation of glutamatergic transmission, via metabotropic glutamatergic receptors (mGluR), may induce neuroprotection. The present study was designed to determine whether the selective antagonist of mGluR1 (3-ethyl-2-methyl-quinolin-6-yl)-(4-methoxy-cyclohexyl)-methanone methanesulfonate (EMQMCM), showed neuroprotection against the kainate (KA)-induced excitotoxicity in vitro and in vivo. In in vitro studies on mouse primary cortical and hippocampal neuronal cultures, incubation with KA (150 μM) induced strong degeneration [measured as lactate dehydrogenase (LDH) efflux] and apoptosis (measured as caspase-3 activity). EMQMCM (0.1–100 μM) added 30 min to 6 h after KA, significantly attenuated the KA-induced LDH release and prevented the increase in caspase-3 activity in the cultures. Those effects were dose- and time-dependent. In in vivo studies KA (2.5 nmol/1 μl) was unilaterally injected into the rat dorsal CA1 hippocampal region. Degeneration was calculated by counting surviving neurons in the CA pyramidal layer using stereological methods. It was found that EMQMCM (5–10 nmol/1 μl) injected into the dorsal hippocampus 30 min, 1 h, or 3 h (the higher dose only) after KA significantly prevented the KA-induced neuronal degeneration. In vivo microdialysis studies in rat hippocampus showed that EMQMCM (100 μM) significantly increased γ-aminobutyric acid (GABA) and decreased glutamate release. When perfused simultaneously with KA, EMQMCM substantially increased GABA release and prevented the KA-induced glutamate release. The obtained results indicate that the mGluR1 antagonist, EMQMCM, may exert neuroprotection against excitotoxicity after delayed treatment (30 min to 6 h). The role of enhanced GABAergic transmission in the neuroprotection is postulated

    The role of oxidative stress in skeletal muscle injury and regeneration: focus on antioxidant enzymes

    Get PDF
    • …
    corecore