74 research outputs found

    Uncertainties and opportunities in delivering environmentally sustainable surgery:the surgeons' view

    Get PDF
    Surgery is a carbon‐heavy activity and creates a high volume of waste. Surgical teams around the world want to deliver more environmentally sustainable surgery but are unsure what to do and how to create change. There are many interventions available, but resources and time are limited. Capital investment into healthcare and engagement of senior management are challenging. However, frontline teams can change behaviours and drive wider change. Patients have a voice here too, as they would like to ensure their surgery does not harm their local community but are concerned about the effects on them when changes are made. Environmentally sustainable surgery is at the start of its journey. Surgeons need to rapidly upskill their generic knowledge base, identify which measures they can implement locally and take part in national research programmes. Surgical teams in the NHS have the chance to create a world‐leading programme that can bring change to hospitals around the world. This article provides an overview of how surgeons see the surgical team being involved in environmentally sustainable surgery

    Gellan gum: a new biomaterial for cartilage tissue engineering applications

    Get PDF
    Gellan gum is a polysaccharide manufactured by microbial fermentation of the Sphingomonas paucimobilis microorganism, being commonly used in the food and pharmaceutical industry. It can be dissolved in water, and when heated and mixed with mono or divalent cations, forms a gel upon lowering the temperature under mild conditions. In this work, gellan gum hydrogels were analyzed as cells supports in the context of cartilage regeneration. Gellan gum hydrogel discs were characterized in terms of mechanical and structural properties. Transmission electron microscopy revealed a quite homogeneous chain arrangement within the hydrogels matrix, and dynamic mechanical analysis allowed to characterize the hydrogels discs viscoelastic properties upon compression solicitation, being the compressive storage and loss modulus of !40 kPa and 3 kPa, respectively, at a frequency of 1 Hz. Rheological measurements determined the sol-gel transition started to occur at approximatel 368C, exhibiting a gelation time of !11 s. Evaluation of the gellan gum hydrogels biological performance was performed using a standard MTS cytotoxicity test, which showed that the leachables released are not deleterious to the cells and hence were noncytotoxic. Gellan gum hydrogels were afterwards used to encapsulate human nasal chondrocytes (1 3 106 cells/mL) and culture them for total periods of 2 weeks. Cells viability was confirmed using confocal calcein AM staining. Histological observations revealed normal chondrocytes morphology and the obtained data supports the claim that this new biomaterial has the potential to serve as a cell support in the field of cartilage regeneration.Contract grant sponsor: The Portuguese Foundation for Science and Technology (FCT); contract grant number: SFRH/BD17135/2004Contract grant sponsor: The European NoE EXPERTIS-SUES; contract grant number: NMP3-CT-2004-500283Contract grant sponsor: The European Project HIPPO-CRATES; contract grant number: STRP 505758-

    Gellan gum injectable hydrogels for cartilage tissue engineering applications: in vitro studies and preliminary in vivo evaluation

    Get PDF
    Gellan gum is a polysaccharide that we have previously proposed for applications in the cartilage tissue engineering field. In this work, gellan gum hydrogels were tested for their ability to be used as injectable systems using simple processing methods, able to deliver and maintain chondrocytes by in situ gelation, and support cell viability and production of extracellular matrix (ECM). Rheological measurements determined that the sol–gel transition occurred near the body temperature at 39ºC, upon temperature decrease, in approximately 20 s. Gellan gum discs shows a storage compression modulus of around 80 kPa at a frequency of 1Hz by dynamic mechanical analysis. Human articular chondrocytes were encapsulated in the gels, cultured in vitro for total periods of 56 days, and analyzed for cell viability and ECM production. Calcein AM staining showed that cell kept viable after 14 days and the histological analysis and real-time quantitative polymerase chain reaction revealed that hyaline-like cartilage ECM was synthesized. Finally, the in vivo performance of the gellan gum hydrogels, in terms of induced inflammatory reaction and integration into the host tissue, was evaluated by subcutaneous implantation in Balb/c mice for 21 days. Histological analysis showed a residual fibrotic capsule at the end of the experiments. Dynamic mechanical analysis revealed that the gels were stable throughout the experiments while evidencing a tendency for decreasing mechanical properties, which was consistent with weight measurements. Altogether, the results demonstrate the adequacy of gellan gum hydrogels processed by simple methods for noninvasive injectable applications toward the formation of a functional cartilage tissue-engineered construct and originally report the preliminary response of a living organism to the subcutaneous implantation of the gellan gum hydrogels. These are the two novel features of this work.J. T. Oliveira would like to acknowledge the Portuguese Foundation for Science and Technology for his grant (SFRH/BD17135/2004). The authors would like to thank the patients at Hospital de S. Marcos, Braga, Portugal for the donation of the biological samples, and the medical staff for their help and support. The authors would also like to thank the Institute for Health and Life Sciences, University of Minho, Braga, Portugal, for allowing the use of their research facilities. This work was carried out under the scope of the European NoE EXPERTISSUES (NMP3-CT-2004 500283) and partially supported by the European Project HIPPOCRATES (STRP 505758-1)

    Solitary metastatic adenocarcinoma of the sternum treated by total sternectomy and chest wall reconstruction using a Gore-Tex patch and myocutaneous flap: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>The consequences of bone metastasis are often devastating. Although the exact incidence of bone metastasis is unknown, it is estimated that 350,000 people die of bone metastasis annually in the United States. The incidence of local recurrences after mastectomy and breast-conserving therapy varies between 5% and 40% depending on the risk factors and primary therapy utilized. So far, a standard therapy of local recurrence has not been defined, while indications of resection and reconstruction considerations have been infrequently described. This case report reviews the use of sternectomy for breast cancer recurrence, highlights the need for thorough clinical and radiologic evaluation to ensure the absence of other systemic diseases, and suggests the use of serratus anterior muscle flap as a pedicle graft to cover full-thickness defects of the anterior chest wall.</p> <p>Case presentation</p> <p>We report the case of a 70-year-old Caucasian woman who was referred to our hospital for the management of a retrosternal mediastinal mass. She had undergone radical mastectomy in 1999. Computed tomography and magnetic resonance imaging revealed a 74.23 × 37.7 × 133.6-mm mass in the anterior mediastinum adjacent to the main pulmonary artery, the right ventricle and the ascending aorta. We performed total sternectomy at all layers encompassing the skin, the subcutaneous tissues, the right pectoralis major muscle, all the costal cartilages, and the anterior part of the pericardium. The defect was immediately closed using a 0.6 mm Gore-Tex cardiovascular patch combined with a serratus anterior muscle flap. Our patient had remained asymptomatic during her follow-up examination after 18 months.</p> <p>Conclusion</p> <p>Chest wall resection has become a critical component of the thoracic surgeon's armamentarium. It may be performed to treat either benign conditions (osteoradionecrosis, osteomyelitis) or malignant diseases. There are, however, very few reports on the results of full-thickness complete chest wall resections for locally recurrent breast cancer with sufficient safety margins, and even fewer reports that describe the operative technique of using the serratus anterior muscle as a pedicled flap.</p

    Elective surgery system strengthening: development, measurement, and validation of the surgical preparedness index across 1632 hospitals in 119 countries

    Get PDF
    Background: The 2015 Lancet Commission on global surgery identified surgery and anaesthesia as indispensable parts of holistic health-care systems. However, COVID-19 exposed the fragility of planned surgical services around the world, which have also been neglected in pandemic recovery planning. This study aimed to develop and validate a novel index to support local elective surgical system strengthening and address growing backlogs. Methods: First, we performed an international consultation through a four-stage consensus process to develop a multidomain index for hospital-level assessment (surgical preparedness index; SPI). Second, we measured surgical preparedness across a global network of hospitals in high-income countries (HICs), middle-income countries (MICs), and low-income countries (LICs) to explore the distribution of the SPI at national, subnational, and hospital levels. Finally, using COVID-19 as an example of an external system shock, we compared hospitals' SPI to their planned surgical volume ratio (SVR; ie, operations for which the decision for surgery was made before hospital admission), calculated as the ratio of the observed surgical volume over a 1-month assessment period between June 6 and Aug 5, 2021, against the expected surgical volume based on hospital administrative data from the same period in 2019 (ie, a pre-pandemic baseline). A linear mixed-effects regression model was used to determine the effect of increasing SPI score. Findings: In the first phase, from a longlist of 103 candidate indicators, 23 were prioritised as core indicators of elective surgical system preparedness by 69 clinicians (23 [33%] women; 46 [67%] men; 41 from HICs, 22 from MICs, and six from LICs) from 32 countries. The multidomain SPI included 11 indicators on facilities and consumables, two on staffing, two on prioritisation, and eight on systems. Hospitals were scored from 23 (least prepared) to 115 points (most prepared). In the second phase, surgical preparedness was measured in 1632 hospitals by 4714 clinicians from 119 countries. 745 (45·6%) of 1632 hospitals were in MICs or LICs. The mean SPI score was 84·5 (95% CI 84·1–84·9), which varied between HIC (88·5 [89·0–88·0]), MIC (81·8 [82·5–81·1]), and LIC (66·8 [64·9–68·7]) settings. In the third phase, 1217 (74·6%) hospitals did not maintain their expected SVR during the COVID-19 pandemic, of which 625 (51·4%) were from HIC, 538 (44·2%) from MIC, and 54 (4·4%) from LIC settings. In the mixed-effects model, a 10-point increase in SPI corresponded to a 3·6% (95% CI 3·0–4·1; p<0·0001) increase in SVR. This was consistent in HIC (4·8% [4·1–5·5]; p<0·0001), MIC (2·8 [2·0–3·7]; p<0·0001), and LIC (3·8 [1·3–6·7%]; p<0·0001) settings. Interpretation: The SPI contains 23 indicators that are globally applicable, relevant across different system stressors, vary at a subnational level, and are collectable by front-line teams. In the case study of COVID-19, a higher SPI was associated with an increased planned surgical volume ratio independent of country income status, COVID-19 burden, and hospital type. Hospitals should perform annual self-assessment of their surgical preparedness to identify areas that can be improved, create resilience in local surgical systems, and upscale capacity to address elective surgery backlogs. Funding: National Institute for Health Research (NIHR) Global Health Research Unit on Global Surgery, NIHR Academy, Association of Coloproctology of Great Britain and Ireland, Bowel Research UK, British Association of Surgical Oncology, British Gynaecological Cancer Society, and Medtronic

    Global wealth disparities drive adherence to COVID-safe pathways in head and neck cancer surgery

    Get PDF
    Peer reviewe

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries
    corecore