335 research outputs found

    Study of mechanical behavior on single use bags welding under gamma irradiation

    Get PDF
    Since a long time, biopharmaceutical industry utilizes more and more single use plastic bags due to its very easy use (long shelf-lives, mechanical properties), preparation, and storage properties (oxygen and water barriers). These plastic bags are composed of two welded multilayer polymer films. To ensure the function of the closure and the non-contamination from the external environment, welding must answer to several parameters according to norm (“ISO 15747,” 2018) and standard (F02 Committee, n.d.). In this present study, the behavior of weldings on Ethylene Vinyl Acetate (EVA) single use bags under gamma irradiation have been studied. Mechanical tests have been performed at several gamma irradiation doses (from 0 kGy to 270 kGy) and at different location of the bag (Figure 1). The first objective is to study the impact of gamma irradiation dose on the welding mechanical tensile behavior. The second objective is to evaluate the impact of the welding location on the welding tensile properties. Each tensile curve (Figure 2) has been decomposed in 6 characteristic points which were evaluated with Principal Component Analysis (PCA): Ultimate Tensile strength at break (UTS), Ultimate elongation or elongation at break, 1st Yield-Strength (Y1 Strength), 1st Yield-Strain (Y1 Strain), 2nd Yield-Strength (Y2 Strength), 2nd Yield-Strain (Y2 Strain). The study showed that weldings are never impacted during tensile testing: this evaluation reveals that in fine the film cracks before the welding modification. Its function of closure and bag content preservation from external environment is fully achieved whatever the gamma irradiation dose and the welding location. Only the multilayer film on both sides of the welding is altered after 100% elongation strain. The EVA bag showed no degradation up to 115 kGy whereas they become to be altered at 270 kGy. The welding location on EVA bag showed different film mechanical behavior correlated to the polymer film extrusion process orientation. Please click Additional Files below to see the full abstract

    Association of change in cardiovascular risk factors with incident cardiovascular events

    Get PDF
    Importance: There is consistent evidence of the association between ideal cardiovascular health and lower incident cardiovascular disease (CVD); however, most studies used a single measure of cardiovascular health.Objective: To examine how cardiovascular health changes over time and whether these changes are associated with incident CVD.Design, Setting, and Participants: Prospective cohort study in a UK general community (Whitehall II), with examinations of cardiovascular health from 1985/1988 (baseline) and every 5 years thereafter until 2015/2016 and follow-up for incident CVD until March 2017.Exposures: Using the 7 metrics of the American Heart Association (nonsmoking; and ideal levels of body mass index, physical activity, diet, blood pressure, fasting blood glucose, and total cholesterol), participants with 0 to 2, 3 to 4, and 5 to 7 ideal metrics were categorized as having low, moderate, and high cardiovascular health. Change in cardiovascular health over 10 years between 1985/1988 and 1997/1999 was considered.Main Outcome and Measure: Incident CVD (coronary heart disease and stroke).Results: The study population included 9256 participants without prior CVD (mean [SD] age at baseline, 44.8 [6.0] years; 2941 [32%] women), of whom 6326 had data about cardiovascular health change. Over a median follow-up of 18.9 years after 1997/1999, 1114 incident CVD events occurred. In multivariable analysis and compared with individuals with persistently low cardiovascular health (consistently low group, 13.5% of participants; CVD incident rate per 1000 person-years, 9.6 [95% CI, 8.4-10.9]), there was no significant association with CVD risk in the low to moderate group (6.8% of participants; absolute rate difference per 1000 person-years, -1.9 [95% CI, -3.9 to 0.1]; HR, 0.84 [95% CI, 0.66-1.08]), the low to high group, (0.3% of participants; absolute rate difference per 1000 person-years, -7.7 [95% CI, -11.5 to -3.9]; HR, 0.19 [95% CI, 0.03-1.35]), and the moderate to low group (18.0% of participants; absolute rate difference per 1000 person-years, -1.3 [95% CI, -3.0 to 0.3]; HR, 0.96 [95% CI, 0.80-1.15]). A lower CVD risk was observed in the consistently moderate group (38.9% of participants; absolute rate difference per 1000 person-years, -4.2 [95% CI, -5.5 to -2.8]; HR, 0.62 [95% CI, 0.53-0.74]), the moderate to high group (5.8% of participants; absolute rate difference per 1000 person-years, -6.4 [95% CI, -8.0 to -4.7]; HR, 0.39 [95% CI, 0.27-0.56]), the high to low group (1.9% of participants; absolute rate difference per 1000 person-years, -5.3 [95% CI, -7.8 to -2.8]; HR, 0.49 [95% CI, 0.29-0.83]), the high to moderate group (9.3% of participants; absolute rate difference per 1000 person-years, -4.5 [95% CI, -6.2 to -2.9]; HR, 0.66 [95% CI, 0.51-0.85]), and the consistently high group (5.5% of participants; absolute rate difference per 1000 person-years, -5.6 [95% CI, -7.4 to -3.9]; HR, 0.57 [95% CI, 0.40-0.80]).Conclusions and Relevance: Among a group of participants without CVD who received follow-up over a median 18.9 years, there was no consistent relationship between direction of change in category of a composite metric of cardiovascular health and risk of CVD

    14-3-3theta Protects against Neurotoxicity in a Cellular Parkinson's Disease Model through Inhibition of the Apoptotic Factor Bax

    Get PDF
    Disruption of 14-3-3 function by alpha-synuclein has been implicated in Parkinson's disease. As 14-3-3s are important regulators of cell death pathways, disruption of 14-3-3s could result in the release of pro-apoptotic factors, such as Bax. We have previously shown that overexpression of 14-3-3θ reduces cell loss in response to rotenone and MPP+ in dopaminergic cell culture and reduces cell loss in transgenic C. elegans that overexpress alpha-synuclein. In this study, we investigate the mechanism for 14-3-3θ's neuroprotection against rotenone toxicity. While 14-3-3s can inhibit many pro-apoptotic factors, we demonstrate that inhibition of one factor in particular, Bax, is important to 14-3-3s' protection against rotenone toxicity in dopaminergic cells. We found that 14-3-3θ overexpression reduced Bax activation and downstream signaling events, including cytochrome C release and caspase 3 activation. Pharmacological inhibition or shRNA knockdown of Bax provided protection against rotenone, comparable to 14-3-3θ's neuroprotective effects. A 14-3-3θ mutant incapable of binding Bax failed to protect against rotenone. These data suggest that 14-3-3θ's neuroprotective effects against rotenone are at least partially mediated by Bax inhibition and point to a potential therapeutic role of 14-3-3s in Parkinson's disease

    II Congrés Internacional sobre Traducció : abril 1994 : actes

    Get PDF
    Machine learning-based approach unravels distinct pathological signatures induced by patient-derived α-synuclein seeds in monkeys. Dopaminergic neuronal cell death, associated with intracellular α-synuclein (α-syn)-rich protein aggregates [termed "Lewy bodies" (LBs)], is a well-established characteristic of Parkinson's disease (PD). Much evidence, accumulated from multiple experimental models, has suggested that α-syn plays a role in PD pathogenesis, not only as a trigger of pathology but also as a mediator of disease progression through pathological spreading. Here, we have used a machine learning-based approach to identify unique signatures of neurodegeneration in monkeys induced by distinct α-syn pathogenic structures derived from patients with PD. Unexpectedly, our results show that, in nonhuman primates, a small amount of singular α-syn aggregates is as toxic as larger amyloid fibrils present in the LBs, thus reinforcing the need for preclinical research in this species. Furthermore, our results provide evidence supporting the true multifactorial nature of PD, as multiple causes can induce a similar outcome regarding dopaminergic neurodegeneratio

    PINK1 Is Necessary for Long Term Survival and Mitochondrial Function in Human Dopaminergic Neurons

    Get PDF
    Parkinson's disease (PD) is a common age-related neurodegenerative disease and it is critical to develop models which recapitulate the pathogenic process including the effect of the ageing process. Although the pathogenesis of sporadic PD is unknown, the identification of the mendelian genetic factor PINK1 has provided new mechanistic insights. In order to investigate the role of PINK1 in Parkinson's disease, we studied PINK1 loss of function in human and primary mouse neurons. Using RNAi, we created stable PINK1 knockdown in human dopaminergic neurons differentiated from foetal ventral mesencephalon stem cells, as well as in an immortalised human neuroblastoma cell line. We sought to validate our findings in primary neurons derived from a transgenic PINK1 knockout mouse. For the first time we demonstrate an age dependent neurodegenerative phenotype in human and mouse neurons. PINK1 deficiency leads to reduced long-term viability in human neurons, which die via the mitochondrial apoptosis pathway. Human neurons lacking PINK1 demonstrate features of marked oxidative stress with widespread mitochondrial dysfunction and abnormal mitochondrial morphology. We report that PINK1 plays a neuroprotective role in the mitochondria of mammalian neurons, especially against stress such as staurosporine. In addition we provide evidence that cellular compensatory mechanisms such as mitochondrial biogenesis and upregulation of lysosomal degradation pathways occur in PINK1 deficiency. The phenotypic effects of PINK1 loss-of-function described here in mammalian neurons provides mechanistic insight into the age-related degeneration of nigral dopaminergic neurons seen in PD

    Heart Rate and Risk of Cancer Death in Healthy Men

    Get PDF
    BACKGROUND: Data from several previous studies examining heart-rate and cardiovascular risk have hinted at a possible relationship between heart-rate and non-cardiac mortality. We thus systematically examined the predictive value of heart-rate variables on the subsequent risk of death from cancer. METHODS: In the Paris Prospective Study I, 6101 asymptomatic French working men aged 42 to 53 years, free of clinically detectable cardiovascular disease and cancer, underwent a standardized graded exercise test between 1967 and 1972. Resting heart-rate, heart-rate increase during exercise, and decrease during recovery were measured. Change in resting heart-rate over 5 years was also available in 5139 men. Mortality including 758 cancer deaths was assessed over the 25 years of follow-up. FINDINGS: There were strong, graded and significant relationships between all heart-rate parameters and subsequent cancer deaths. After adjustment for age and tobacco consumption and, compared with the lowest quartile, those with the highest quartile for resting heart-rate had a relative risk of 2.4 for cancer deaths (95% confidence interval: 1.9-2.9, p<0.0001) This was similar after adjustment for traditional cardiovascular risk factors and was observed for the commonest malignancies (respiratory and gastrointestinal). Similarly, significant relationships with cancer death were observed between poor heart rate increase during exercise, poor decrease during recovery and greater heart-rate increase over time (p<0.0001 for all). INTERPRETATION: Resting and exercise heart rate had consistent, graded and highly significant associations with subsequent cancer mortality in men

    Insufficient OPC migration into demyelinated lesions is a cause of poor remyelination in MS and mouse models

    Get PDF
    Failure of remyelination of multiple sclerosis (MS) lesions contributes to neurodegeneration that correlates with chronic disability in patients. Currently, there are no available treatments to reduce neurodegeneration, but one therapeutic approach to fill this unmet need is to promote remyelination. As many demyelinated MS lesions contain plentiful oligodendrocyte precursor cells (OPCs), but no mature myelinating oligodendrocytes, research has previously concentrated on promoting OPC maturation. However, some MS lesions contain few OPCs, and therefore, remyelination failure may also be secondary to OPC recruitment failure. Here, in a series of MS samples, we determined how many lesions contained few OPCs, and correlated this to pathological subtype and expression of the chemotactic molecules Semaphorin (Sema) 3A and 3F. 37 % of MS lesions contained low numbers of OPCs, and these were mostly chronic active lesions, in which cells expressed Sema3A (chemorepellent). To test the hypothesis that differential Sema3 expression in demyelinated lesions alters OPC recruitment and the efficiency of subsequent remyelination, we used a focal myelinotoxic mouse model of demyelination. Adding recombinant (r)Sema3A (chemorepellent) to demyelinated lesions reduced OPC recruitment and remyelination, whereas the addition of rSema3F (chemoattractant), or use of transgenic mice with reduced Sema3A expression increased OPC recruitment and remyelination. We conclude that some MS lesions fail to remyelinate secondary to reduced OPC recruitment, and that chemotactic molecules are involved in the mechanism, providing a new group of drug targets to improve remyelination, with a specific target in the Sema3A receptor neuropilin-1. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00401-013-1112-y) contains supplementary material, which is available to authorized users

    Successful Amelioration of Mitochondrial Optic Neuropathy Using the Yeast NDI1 Gene in a Rat Animal Model

    Get PDF
    Background: Leber’s hereditary optic neuropathy (LHON) is a maternally inherited disorder with point mutations in mitochondrial DNA which result in loss of vision in young adults. The majority of mutations reported to date are within the genes encoding the subunits of the mitochondrial NADH-quinone oxidoreductase, complex I. Establishment of animal models of LHON should help elucidate mechanism of the disease and could be utilized for possible development of therapeutic strategies. Methodology/Principal Findings: We established a rat model which involves injection of rotenone-loaded microspheres into the optic layer of the rat superior colliculus. The animals exhibited the most common features of LHON. Visual loss was observed within 2 weeks of rotenone administration with no apparent effect on retinal ganglion cells. Death of retinal ganglion cells occurred at a later stage. Using our rat model, we investigated the effect of the yeast alternative NADH dehydrogenase, Ndi1. We were able to achieve efficient expression of the Ndi1 protein in the mitochondria of all regions of retinal ganglion cells and axons by delivering the NDI1 gene into the optical layer of the superior colliculus. Remarkably, even after the vision of the rats was severely impaired, treatment of the animals with the NDI1 gene led to a complete restoration of the vision to the normal level. Control groups that received either empty vector or the GFP gene had no effects

    TRPM2-mediated rise in mitochondrial Zn2+ promotes palmitate-induced mitochondrial fission and pancreatic β-cell death in rodents

    No full text
    Rise in plasma free fatty acids (FFAs) represents a major risk factor for obesity-induced type 2 diabetes. Saturated FFAs cause a progressive decline in insulin secretion by promoting pancreatic β-cell death through increased production of reactive oxygen species (ROS). Recent studies have demonstrated that palmitate (a C16-FFA)-induced rise in ROS causes β-cell death by triggering mitochondrial fragmentation, but the underlying mechanisms are unclear. Using the INS1-832/13 β-cell line, here we demonstrate that palmitate generates the ROS required for mitochondrial fission by activating NOX (NADPH oxidase)-2. More importantly, we show that chemical inhibition, RNAi-mediated silencing and knockout of ROS-sensitive TRPM (transient receptor potential melastatin)-2 channels prevent palmitate-induced mitochondrial fission. Although TRPM2 activation affects the intracellular dynamics of Ca2+ and Zn2+, chelation of Zn2+ alone was sufficient to prevent mitochondrial fission. Consistent with the role of Zn2+, palmitate caused a rise in mitochondrial Zn2+, leading to Zn2+-dependent mitochondrial recruitment of Drp-1 (a protein that catalyses mitochondrial fission) and loss of mitochondrial membrane potential. In agreement with the previous reports, Ca2+ caused Drp-1 recruitment, but it failed to induce mitochondrial fission in the absence of Zn2+. These results indicate a novel role for Zn2+ in mitochondrial dynamics. Inhibition or knockout of TRPM2 channels in mouse islets and RNAi-mediated silencing of TRPM2 expression in human islets prevented FFA/cytokine-induced β-cell death, findings that are consistent with the role of abnormal mitochondrial fission in cell death. To conclude, our results reveal a novel, potentially druggable signalling pathway for FFA-induced β-cell death. The cascade involves NOX-2-dependent production of ROS, activation of TRPM2 channels, rise in mitochondrial Zn2+, Drp-1 recruitment and abnormal mitochondrial fission
    corecore