8,565 research outputs found

    Toward a constitutive model for cure dependent modulus of a high temperature epoxy during the cure

    Get PDF
    A constitutive model, based on Kohlrausch-Williams-Watts (KWW) equations, was developed to simulate the evolution of the dynamic relaxation modulus during the cure of a "high temperature' epoxy. The basic assumption of the modelling methodology proposed is the equivalence of the mechanisms underlying the evolution of the glass transition temperature and the relaxation time shift during the cure, leading to the use of a common potential function. This assumption is verified by the comparison of normalized glass transition data and principal relaxation times, which have been found to follow a single master curve. Results show satisfactory agreement between experimental data and model prediction over the range of chemical conversion considered

    Percolation threshold of carbon nanotubes filled unsaturated polyesters

    Get PDF
    This paper reports on the development of electrically conductive nanocomposites containing multi-walled carbon nanotubes in an unsaturated polyester matrix. The resistivity of the liquid suspension during processing is used to evaluate the quality of the filler dispersion, which is also studied using optical microscopy. The electrical properties of the cured composites are analysed by AC impedance spectroscopy and DC conductivity measurements. The conductivity of the cured nanocomposite follows a statistical percolation model, with percolation threshold at 0.026 wt.% loading of nanotubes. The results obtained show that unsaturated polyesters are a matrix suitable for the preparation of electrically conductive thermosetting nanocomposites at low nanotube concentrations. The effect of carbon nanotubes reaggregation on the electrical properties of the spatial structure generated is discussed

    Anomalous Thermoluminescent Kinetics of Irradiated Alkali Halides

    Get PDF
    Anomalous thermoluminescent kinetics of irradiated alkali halide

    Ultracold polarized Fermi gas at intermediate temperatures

    Full text link
    We consider non-zero temperature properties of the polarized two-component Fermi gas. We point out that stable polarized paired states which are more stable than their phase separated counterparts with unpolarized superfluid region can exist below the critical temperature. We also solve the system behavior in a trap using the local density approximation and find gradually increasing polarization in the center of the system as the temperature is increased. However, in the strongly interacting region the central polarization increases most rapidly close to the mean-field critical temperature, which is known to be substantially higher than the critical temperature for superfluidity. This indicates that most of the phase separation occurs in the fluctuation region prior to superfluidity and that the polarization in the actual superfluid is modest.Comment: Final published versio

    An Energy-conscious Transport Protocol for Multi-hop Wireless Networks

    Full text link
    We present a transport protocol whose goal is to reduce power consumption without compromising delivery requirements of applications. To meet its goal of energy efficiency, our transport protocol (1) contains mechanisms to balance end-to-end vs. local retransmissions; (2) minimizes acknowledgment traffic using receiver regulated rate-based flow control combined with selected acknowledgements and in-network caching of packets; and (3) aggressively seeks to avoid any congestion-based packet loss. Within a recently developed ultra low-power multi-hop wireless network system, extensive simulations and experimental results demonstrate that our transport protocol meets its goal of preserving the energy efficiency of the underlying network.Defense Advanced Research Projects Agency (NBCHC050053

    Review of Access and Quality of Care in SCHIP Using Standardized National Performance Measures

    Get PDF
    The State Children\u27s Health Insurance Program (SCHIP) has proven to be a critical addition to public coverage programs for low-income children since its inception ten years ago. Tracking the number of children enrolled, however, is only part of the story. This technical paper reviews access and quality for children enrolled in SCHIP by examining information on four primary and preventive care health measures submitted to the Centers for Medicare & Medicaid Services by states in their 2005 annual reports. The paper concludes that the data examined for this paper indicate that children enrolled in SCHIP are receiving not only coverage but care; the paper also suggests issues that require additional attention and discussion

    A novel N-terminal extension in mitochondrial TRAP1 serves as a thermal regulator of chaperone activity.

    Get PDF
    Hsp90 is a conserved chaperone that facilitates protein homeostasis. Our crystal structure of the mitochondrial Hsp90, TRAP1, revealed an extension of the N-terminal β-strand previously shown to cross between protomers in the closed state. In this study, we address the regulatory function of this extension or 'strap' and demonstrate its responsibility for an unusual temperature dependence in ATPase rates. This dependence is a consequence of a thermally sensitive kinetic barrier between the apo 'open' and ATP-bound 'closed' conformations. The strap stabilizes the closed state through trans-protomer interactions. Displacement of cis-protomer contacts from the apo state is rate-limiting for closure and ATP hydrolysis. Strap release is coupled to rotation of the N-terminal domain and dynamics of the nucleotide binding pocket lid. The strap is conserved in higher eukaryotes but absent from yeast and prokaryotes suggesting its role as a thermal and kinetic regulator, adapting Hsp90s to the demands of unique cellular and organismal environments

    Fatigue delamination behaviour of unidirectional carbon fibre/epoxy laminates reinforced by Z-Fiber® pinnin

    Get PDF
    -Pin reinforced carbon-fibre epoxy laminates were tested under Mode I and Mode II conditions, both quasi-statically and in fatigue. Test procedures were adapted from existing standard or pre-standard tests. Samples containing 2% and 4% areal densities of carbon-fibre Z-pins (0.28mm diameter) were compared with unpinned laminates. Quasi-static tests under displacement control yielded a dramatic increase of the apparent delamination resistance. Specimens with 2% pin density failed in Mode I at loads 170N, equivalent to an apparent GIC of 2kJ/m2. Fatigue testing under load control showed that the presence of the through- thickness reinforcement slowed down fatigue delamination propagation
    corecore