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Abstract 

A constitutive model, based on Kohlrausch-Williams-Watts (KWW) equations, was developed to 

simulate the evolution of the dynamic relaxation modulus during the cure of a ‘high temperature’ 

epoxy. The basic assumption of the modelling methodology proposed is the equivalence of the 

mechanisms underlying the evolution of the glass transition temperature and the relaxation time shift 

during the cure, leading to the use of a common potential function. This assumption is verified by 

the comparison of normalised glass transition data and principal relaxation times, which have been 

found to follow a single master curve. Results show satisfactory agreement between experimental 

data and model prediction over the range of chemical conversion considered.  
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1 Background 

During the polymerization of any synthetic thermosetting polymer the material undergoes chemical 

and physical transformations which lead to the hardening of the material, with a corresponding 

transition from a viscous liquid to an elastic solid. Under normal service conditions the material is 

usually far below its glass transition temperature and follows linear elastic behaviour. However, 

during the manufacturing process, the polymer matrix exhibits viscoelastic behaviour which affects 

the development of residual stresses. If the resin is used as the matrix in a continuous fibre 

reinforced composite, such residual stresses can lead to significant distortion in the final part. An 

accurate model for the development of residual stresses and the monitoring of deformations during 

the manufacturing stage requires a quantitative sub-model of the gradual evolution of the matrix 

mechanical properties. Overestimation of the residual stress induced during the process can be 

eliminated only by considering the actual value of viscoelastic modulus evaluated at intermediate 

degrees of chemical conversion (degree of cure). Modelling of the modulus evolution is necessary 

for the analysis of both mechanical and non-mechanical loads developed during the manufacturing 

process, due to interactions between the tooling and the often complex material arrangement. The 

dependence of the viscoelastic properties of thermosetting systems on the degree of cure has been 

the subject of only very few investigations, both in terms of experimental results and modelling 

approach. Suzuki et al.[1] presented relaxation data for epoxies cured following various cure cycles. 

The cure state of these samples was not determined and the relationship between mechanical 

properties and cure evolution could not be explored. In a work by Kim et al. [2], a fixed value is 

assumed for the elastic modulus of the uncured and the fully cured systems, while a linear 

relationship is assumed between the elastic modulus and the degree of conversion, in the entire 

region between gelled resin and its glassy state. White et al.[3] used a viscoelastic formulation to 



ACCEPTED MANUSCRIPT 

 3 

study warpage and residual stresses in asymmetric composite laminates during  cure, assuming a 

time- and cure- dependent model to simulate transverse modulus. Investigations of the behaviour of 

neat resin at various post-gelation degrees of conversion under relaxation mode for various 

temperatures [4] have led to the development of a model of the relaxation modulus at lower degree 

of cure based on the Adams-Gibbs [5] formulation for the volume relaxation in glasses. Yi et al. [6] 

included viscoelastic effects in the analysis of residual stress development in laminated plates using 

a chemo-thermo-viscoelastic constitutive equation and considering a discontinuous model for the 

mechanical properties with a step at the gel point. O B̀rien et al. [7] have reported a series of 

experiments on the unreacted, partially reacted and post-gelled resin. Simon et al. [8] have presented 

a study on the cure-dependent storage modulus of a commercial toughened epoxy resin, giving a 

general methodology to model the time-temperature-conversion effects in viscoelastic of thermosets.  

The present study focuses on modelling the evolution of resin viscoelastic modulus during the cure. 

Experimental results reported in a complementary study [9] are analysed in the context of KWW 

models which is modified to account for the dependence of mechanical properties on conversion. 

The considered model uses the concept of principal relaxation time for each degree of conversion 

with principal relaxation times normalized with respect to the value for the fully cured state in order 

to find a suitable correlation with structural changes. Assuming that the same mechanism of 

structural evolution governs both the development of the glass transition temperature and of the 

mechanical modulus, an identical “potential function” can be adopted. This assumption leads to an 

excellent agreement of the experimental data with the model predictions. These results are supported 

by dielectric relaxation measurements presented in the literature [10]. 
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2 Materials and Methods 

The synthetic resin system used in the present work was a pre-commercial formulation based on a 

tetrafunctional epoxy, cured with an amine hardener and containing an aromatic thermoplastic 

component. Whilst the exact composition of the resin is unimportant, the blend can be considered to 

be representative of the class of resins known as ‘high temperature aerospace grade toughened 

epoxies’. Partial curing of plaques of the resin was performed in a cavity formed by two glass plates 

and an aluminium spacer. Each of the plates was covered with a layer of PTFE/glass release film as 

well as liquid release agent (FREEKOTE 700). Five different plaques were prepared following 

isothermal curing schedules with a dwell temperature in the 160-180oC range. The final degree of 

conversion of the five plates as calculated using cure kinetics information on the resin system [11] 

was 0.68, 0.80, 0.87, 090 and 0.96. Dynamical mechanical tests using a TA Instruments DMA, type 

2940, were performed on rectangular strips taken from each of the partially cured plate. A three-

point bending test mode configuration was employed. Each sample was equilibrated for about 5 

minutes before a test segment starting at each temperature, to provide a uniform temperature 

distribution inside the material. Three specimens were tested for each degree of conversion. Stress 

relaxation data were captured during each segment. More details of standard experimental 

procedures and data treatment for DSC and DMA analysis can be found in reference [9]. 

3 Modeling Results 

3.1 Cure-dependent ultimate relaxation modulus 

The variations of ultimate modulus were found to be significant and an appropriate model is 

developed to express the dependence on the degree of cure. Within the gelation region, where the 
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three-dimensional network starts to form, the modulus rises from a very low value of 1.38 MPa to a 

value of 60.9 MPa at temperature above the corresponding glass transition temperature. .  
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Figure 1 - Experimental points and fitting curve for ultimate relaxed modulus 

The cure dependence of the equilibrium relaxation modulus is modelled using an empirical function 

proposed by O B̀rien et al.[7], which expresses the value of relaxed modulus as a function of the 

degree of cure assuming a very low modulus value before gelation:  
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where ∞EC , 
∞ED  and 

∞EF  are fitting parameters and gelα  is the conversion at gelation (0.66 for the 

resin system of this study). It should be noted that this model is valid for degrees of cure over the 

gelation conversion. The values of the parameters obtained from the fitting of the experimental 

results are reported in table 1. Figure 1 shows a comparison between fitting results and experimental 

data for the ultimate relaxation modulus indicating a close agreement.  
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3.2 Shift Factor: results and phenomenological model 

For viscoelastic materials, the mechanical response is history-dependent and involves the use of a 

reduced time which can be expressed using a temperature-cure dependent shift factor as follows: 

( )Ta
t

,α
ξ

τ

=            Eq. 2 

where ξ  is the reduced time, t  is the actual experimental time and ( )TaT ,α  is the degree of cure 

dependent temperature-conversion shift factor.  

 

Figure 2 - 3D plot of experimental shift factors vs. temperature and degree of cure 

For polymeric materials, shift factors are generally functions of temperature; in the case of a reactive 

system the dependence on fractional conversion needs to be taken into account in implementing the 

model. Figure 2 shows the horizontal shift factors used to generate the master curves of stress 

relaxation modulus assuming as reference temperature the value of 302 K as indicated by the initial 

value of each shift factor curves in fig. 2 and 3. 



ACCEPTED MANUSCRIPT 

 7 

 

Figure 3 - Shift factors for partially cured samples (0.80- 0.87-0.90-0.96) fitted with WLF and linear models 

 

As in the works of O’Brien et al. [7] and Simon et al. [8], shift factor curves cannot be modelled 

using a WLF type equation. The Williams-Landel-Ferry model can be applied only to the first part 

of each curve; for the remaining part, a linear shift factor model shows better agreement with the 

experimental points.  
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Figure 4 – (a) Experimental shift factor data vs. (T-Tg) and model fitting at each conversion (b) Model predictions over 

the full degree of cure range 

The shift factor curves for degrees of cure equal to 0.80, 0.87, 0.90 and 0.96 are illustrated in figure 

3, alongside a linear and a WLF model fit in the high and low temperature region respectively. Both 

parts of each curve show very good agreement. Comparisons of these curves with the δtan  curves, 

obtained by torsional rheometry presented in [10] indicate that the intersection point of the WLF and 

the linear models corresponds to the onset of the post cure reaction. 

Presenting experimental shift factors as a function of the difference gTT − , where T  is the test 

temperature and gT  the glass transition temperature for the corresponding level of conversion, 

allows the use of the following expression to model the shift factors upon the degree of cure and 

temperature: 

( ) ( )( )gCC
TTCCCC

aC

C
aC −+⋅++⋅=

⋅+
⋅

+ +⋅ 8721
4

3
9

651
log ααα

α
τ

τ     Eq.3 

The fit of the model presented in eq. 3 to experimental data, as obtained using the generalised 

reduced gradient nonlinear optimisation method implemented in the solver of Microsoft Excel, is 

illustrated in figure 4.a. The values of the nine parameters of the model are given in table 2. The 
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predictions of the model described by eq. 3 over the whole degree of cure range are shown in figure 

4.b. It has to be noticed that at this stage, Eq. 3, was build without any physical meaning associated 

with the conversion dependent modulus. 

3.3 Kohlrausch-Williams-Watts Model (KWW) 

The time-dependent properties (mechanical, dielectric, thermal) of glass-forming materials (organic, 

mineral and metallic) follow the stretched exponential or so-called Kohlrausch-Williams-Watts [12-

15] function (KWW). For a generic polymer system the modulus can be written as follows: 

( )
β

τ �
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∞ ⋅= p

t

eEtE           Eq. 4 

where β  and pτ , are two constants characteristic of the material and ∞E  is the fully relaxed 

modulus. The physical meaning of the two parameters can be identified by considering the 

characteristic bell shape of the relaxation time distribution associated with the curve of relaxation 

modulus. The value of pτ  (called the characteristic relaxation time) represents the central point of 

the time distribution function, whereas β  (called the non-exponential parameter) is inversely related 

to the breadth of the relaxation time distribution. The non-exponential parameter, ranges from 0 to 1, 

with 1=β  corresponding to a single-relaxation time Debye response. Lower values of β  typically 

reflect increased intermolecular co-operativity as influenced by the chemical structure of the 

polymer, as well as potential constraints owing to the presence of crystallinity or crosslinks [16]. 

Fitting of the experimental master curves was carried out using the Levenberg-Marquardt non-linear 

least squares fitting algorithm implemented in Origin v6.0; the values of the KWW parameters for 

each degree of cure are reported in Table 3. A high correlation coefficient of about 0.999 has been 

obtained. Artificial points have been added in order to force the fitting within the glassy state, 

adopting an average value of 3.43 GPa for the glassy relaxation modulus.  
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Eq. 4 implies that different materials are characterised by distinct values of the parameters β  and 

pτ . The same assumption can be made for the resin during the cure: at each degree of cure a pair of 

KWW parameters ( )pτβ ,   can be evaluated. Consequently, a functional dependence for the values 

of these parameters on the degree of cure can be established. For a given reference temperature, 

refT , and by using different values of the parameters ( )pτβ ,  for each degree of cure, the following 

general form of degree a cure dependent KWW model is obtained: 

( ) ( )
( )

( )

( )αβ

ατ
αξ

αα
�
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�
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�

�

�
−

∞ ⋅= p

Tt

eETtE
,,

,,         Eq. 5 

The dependence of parameters β  and pτ  on the degree of cure has not been investigated widely. 

However, Mijovic et al. [10] have obtained satisfactory results using a simple linear model for the 

non-exponential parameter β , as follows: 

( ) ββ ααβ 21 cc +⋅=           Eq. 6 

where β1c  and β2c  are fitting parameters. Figure 5 shows the linear fit for the values reported in 

Table 3, with parameters β1c , β2c  equal to -0.377 and 0.522 respectively. The increase in the 

breadth of the relaxation time distribution implied by this dependence is related to the increase in the 

complexity of the polymer network during cure which leads to a reduction in the mobility of the 

polymer molecules. 
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Figure 5 - Linear fitting of the beta parameter values 

A direct consequence of the increased network complexity and presence of entanglements is a 

reduction in relaxation rate. For a generic polymer system, stress relaxation time decreases as the 

temperature increases, with a sharp reduction in the modulus value over its glass transition 

temperature.  In the case of an epoxy resin under stress, relaxation times increase with increasing 

degree of cure. Assuming that the molecular mobility influences the glass transition through the 

same mechanism that controls the stress relaxation function, the behaviour of the glass transition 

temperature at a fixed degree of cure can be normalized with respect to its value for a given 

reference conversion. This approach leads to the definition of a potential function, which is identical 

to that obtained by normalizing the characteristic relaxation times with respect to the relaxation time 

at the same conversion. Thus: 

( )
( ) ( )α
α
α

gT
refg

g g
T

T
=           Eq. 7 
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where ( )αgT  is the glass transition temperature as a function of the degree of cure, and ( )refgT α  is 

the reference conversion. If the same mechanism drives the change in normalised relaxation time 

then: 

( )
( ) ( )α
ατ
ατ

τ p
g

refp

p =
�
�

�

�

�
�

�

�
log          Eq. 8 

with  

( ) ( )αα τ pg
ggT =           Eq. 9 

where ( )ατ p  is the relaxation time expressed as a function of the degree of cure, and ( )refp ατ  is its 

value at the reference conversion refα .  

 

Figure 6 - Normalized values of single relaxation time vs conversion with normalized values of glass transition 

temperature obtained experimentally by thermal analysis and torsional rheometry alongside the Di Benedetto model 

(solid line) 
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(b) 

Figure 7 – (a) Model predictions and experimental stress relaxation modulus curves. (b) Prediction for the relaxation 

modulus over the full degree of cure range. 
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Figure 6 reports the normalised values of the single relaxation time pτ  and the glass transition 

temperature values taken from the DSC tests and tanδ curves; the best fitting obtained using the Di 

Benedetto [17-18] equation, commonly used to model the evolution of the glass transition 

temperature, is also superimposed. The mentioned Di Benedetto model is a single fitting parameter 

model already used by the author for the same material to model the evolutionary progression of 

glass transition temperature with degree of cure, and it can be suitable implemented in 

computational routine. The results show very good agreement for the two potential functions, 

thereby supporting the assumption that the assumption of a common effective mechanism that 

governs the change in glass transition temperature with the progress of the reaction and the change 

in stress relaxation times during cure. It is important to note that measurements of the glass 

transition temperature made using different experimental techniques will yield different results, due 

to the inherent time scales, relaxation mechanisms and specimen sizes associated with specific 

methods [19-20]. In order to apply correctly the assumptions underlying eq. 9, comparisons need to 

be based on congruent measurements. For this reason, values of the glass transition temperature 

were taken as the temperature of the peak in tanδ obtained by solid torsional rheometry. The stress 

relaxation modulus has been evaluated for all the levels of conversion using the system of eqs. 3 and 

5-7 (or 8, depending on the experimental data, glass transition temperature or principal relaxation 

times, used to compute the potential function). Figure 7.a compares master curves based on 

experimental stress relaxation data and on the predictions of the KWW model, indicating a very 

satisfactory agreement. The prediction over the whole range of conversions is reported in Figure 7.b; 

the curves show a gradual shift towards higher values of reduced time as expected and a constant 

value for the glassy modulus.  
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Figure 8 – Sub-model schematic. 

The computational procedure required for the implementation of this model as a sub-model of 

process simulations is illustrated in Figure 8. The sub-model accepts a time, temperature, degree of 

cure point form the process simulation and returns a value for the cure and temperature dependent 

viscoelastic modulus of the thermosetting matrix. 

4 Conclusions 

The cure dependent viscoelastic modulus of an epoxy system can be described by a modification of 

the general Kohlrausch-Williams-Watts equation. The KWW model has been implemented by 

introducing a potential function to account for the structural evolution of the system from a liquid 
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polymer like to a solid vitrified material. The mechanism of relaxation is assumed directly related to 

the density of cross-links because of the inherent constraints imposed on molecular mobility as the 

network is formed. The potential function has been produced by normalizing the principal times 

with respect to the time of reference conversion, to account for the effect on the principal relaxation 

times of the polymer structural evolution. The model shows a very good agreement with 

experimental data for the conversion experimentally examined. 
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Figure Captions 

 
Figure 5 - Experimental points and fitting curve for ultimate relaxed modulus 

 
Figure 6 - 3D plot of experimental shift factors vs. temperature and degree of cure 

 

Figure 7 - Shift factors for partially cured samples (0.80- 0.87-0.90-0.96) fitted with WLF and linear models 

Figure 8 – (a) Experimental shift factors vs. (T-Tg) and model at each conversion (b) Model predictions over the full 

degree of cure range 

Figure 5 -  Linear fitting of the beta parameter values 

Figure 6 - Normalized values of single relaxation time vs conversion with normalized values of glass transition   

temperature obtained experimentally by thermal analysis and torsional rheometry alongside the DiBenedetto 

model (solid line) 

Figure 7 – (a) Model predictions and experimental stress relaxation modulus curves. (b) Prediction for the relaxation 

modulus over the full degree of cure range. 

Figure 8 – Sub-model schematic. 
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Tables 
 

∞EC  
∞ED  

∞EF  

-5.18 log(Pa) 4.10 log(Pa) 89.02×103 

Table 1 – Values of fitting parameter for eq. 1 

 
 
 
 
 

C1 C2 C3 C4 C5 C6 C7 C8 Log(C9) 

-23.01 3.80 -5.28 4.73×103 -5.53 6.08 0.17 -0.28 -14.31 

Table 2 Values of the coefficients of the shift factor model (eq.3) 

 
 
 
 
 

Sample/conversion 0.68 0.80 0.87 0.90 96 

E∞∞∞∞ (GPa) 1.39×10-3 1.61×10-3 3.78×10-2 4.49×10-2 6.10×10-2 

ββββ 2.74×10-1 2.01×10-1 1.98×10-1 1.87 ×10-1 1.57×10-1 

ττττp 2.53×104 3.05×105 1.32×107 3.78×107 7.25×108 

  

E0 (GPa) 3.43 

Table 3 Values of the KWW parameters at different degrees of cure 
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