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Abstract

This paper reports on the development of electrically conductive nanocomposites

containing multi-walled carbon nanotubes in an unsaturated polyester matrix. The

resistivity of the liquid suspension during processing is used to evaluate the quality

of the filler dispersion, which is also studied using optical microscopy. The electrical

properties of the cured composites are analysed by AC impedance spectroscopy and

DC conductivity measurements. The conductivity of the cured nanocomposite fol-

lows a statistical percolation model, with percolation threshold at 0.026 wt. % load-

ing of nanotubes. The results obtained show that unsaturated polyesters are a matrix

suitable for the preparation of electrically conductive thermosetting nanocomposites

at low nanotube concentrations. The effect of carbon nanotubes reaggregation on

the electrical properties of the spatial structure generated is discussed.
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1. Introduction

Carbon nanotubes (CNT) have been the focus of extensive research efforts in the

context of multifunctional composite materials [1, 2]. The discovery of electrically

conductive behaviour dominated by percolation at low filler loadings [3] has led to

wide interest in the interplay between the processing and the electrical response of

carbon nanotube based nanocomposites. Thermosetting epoxies have been consid-

ered as the most promising candidate matrix polymers, as early results reported

conductive behaviour by the addition of less than 0.1 wt. % of multi-walled nan-

otubes (MWNT) [4]. Few works have investigated the addition of carbon nanotubes

in unsaturated polyester resin systems [5, 6, 7, 8]; the observed percolation thresholds

are about 1 wt. % for entangled CNT and about 0.1 wt. % for non-entangled CNT.

Vinyl ester based nanocomposites, similarly to epoxy, follow conductive behaviour

at concentrations of nanofiller below 0.1 wt. % [9]. The electrical percolation and

conductivity of CNT nanocomposites is the topic of a large number of publications,

which have been recently reviewed in [10]. As the authors point out, nanocomposites

based on non-entangled MWNT are about 50 times more conductive than industrial

MWNT.

The electrical properties of heterogeneous systems of conductive fillers in insu-

lating matrices above the percolation threshold can be described by the statistical

percolation model as follows [11]:

σ = σ̄0(ψ − ψc)
t̄ , ψ > ψc (1)

where σ is the conductivity of the nanocomposite , ψ denotes the volume fraction of

the filler, t̄ is a critical exponent that depends on the geometry of the network, σ̄0

is the proportionality coefficient and ψc is the percolation threshold, i.e. the volume
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fraction of filler necessary to form a network of contacting particles, at which the

system behaviour changes from electrically insulating to conductive. The percolation

threshold can be calculated analytically using the excluded volume theory [12, 13],

which for a filler of cylindrical shape and high aspect ratio yields:

ψc = 1 − e

(

−

1.4[(π/4)W2L+(π/6)W3]
[(4π/3)W3+2πW2L+(π/2)WL2]

)

(2)

where W is the diameter and L is the length of the nanotubes. This result assumes

straight and randomly oriented filler rods. It is expected that waviness alone, assum-

ing ideal dispersion, leads to an increase of percolation threshold of up to a factor of

two [14]. The concentrations used for the percolation model described by Eq. 1 are

expressed in terms of volume fractions. Since the density of nanotubes is not known

with high accuracy it is more convenient to use an expression that involves weight

fractions when referring to CNT based nanocomposites. The low loading fractions

allow Eq. 1 to be modified as follows:

σ = σ0(φ− φc)
t , φ > φc (3)

Here φ is the weight fraction, φc is the weight fraction percolation threshold and σ0

and t denote the proportionality coefficient and the exponent of the weight fractions

percolation model respectively.

The quality of filler dispersion is a critical factor in the preparation of nanocom-

posites based on nanotubes, governing the effectiveness of electrical conductivity en-

hancement [15]. Materials characterised by non-homogeneous dispersion of nanofiller

have improved electrical properties compared to the neat resin; however the loading

required to form a percolating network is significantly higher than that predicted by

Eq. 2 [10]. Commercial multi-walled nanotubes are typically wavy and mechani-
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cally entangled in microscopic clusters, which must be dispersed in the resin matrix

without excessively damaging their structure and without decreasing their length.

Aligned multi-walled and single-walled nanotubes are easier to disperse due to the

partial elimination of both waviness and entanglement. Several techniques have been

used successfully to disperse nanotubes in thermosetting resins including high shear

mixing, triple-roll milling and ultrasonication [16], with the route used usually being

specific to the type of the matrix.

When homogeneous dispersions of filler particles are allowed to partially reag-

gregate during cure, the resulting electrical conductivity can be higher than that of

the non reaggregated material [17]. The fractal structure of the filler network results

in more contacts between nanotubes than that predicted by statistical percolation

theory, leading to increased conductivity. This phenomenon has been observed ini-

tially in the preparation of carbon black reinforced epoxy composites [18] and has

been confirmed in carbon nanotube reinforced epoxy nanocomposites [19, 17, 20].

During the process of dispersion the filler particles become electrostatically charged,

stabilising the suspension and preventing spontaneous agglomeration. The forma-

tion and the morphology of the structure of aggregates can be influenced by the

application of electric field [21] and shear [22]. However, well-dispersed suspensions

of nanotubes in epoxy have been reported to reaggregate spontaneously as a con-

sequence of hardener addition [17]. The lowest percolation thresholds reported in

the literature are 0.0021 wt. % for composites based on non-entangled multi-walled

nanotubes [21, 22, 19], 0.005 wt. % for single-walled nanotubes [17] and 0.011 wt. %

for entangled multi-walled nanotubes [4, 20], all of which have been obtained using

epoxy matrices. As Bauhofer and Kovacs point out in their review [10], with opti-

mised dispersion a percolation threshold in the range of 0.1 wt. % might be possible

for nearly any CNT/polymer system.
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This work reports on the development of an unsaturated polyester/nanotube

nanocomposite with low percolation threshold. The process of dispersion based on

high shear mixing is monitored on-line by measuring the electrical resistivity of the

liquid suspension. Microscopy is utilised to study the spatial structure of the nan-

otubes network formed by reaggregation during the cure of the matrix. The electrical

behaviour of the cured material is investigated and its dependence on the content

of nanotubes is used to evaluate the percolation threshold of the nanocomposite.

This paper demonstrates that well dispersed suspensions of entangled MWNTs in

unsaturated polyesters produce nanocomposites with the same levels of conductivity

as these observed in epoxy/entangled-MWNTs systems.

2. Experimental

The carbon nanotubes used in this work are a commercial grade of entangled

multiwalled nanotubes, prepared by carbon vapour deposition, with a carbon pu-

rity of 90%, nominal diameter and length of 9.5 nm and 1.5 µm respectively. The

percolation threshold, calculated by equation 2 without accounting for waviness, is

0.43 vol%, which can be related to a value of gravimetric percolation threshold of

approximately 0.96 wt. % [10, 23].

The matrix used for the preparation of nanocomposites is an unsaturated polyester

resin (UPE, from Scott Bader), with styrene content of 30 wt. %. Neat resin and

nanocomposites were cured following a standard industrial procedure, by the addi-

tion of 0.02 wt. % of cobalt octanoate and 0.3 wt. % of methyl ethyl ketone peroxide.

After the addition of cobalt and peroxide the samples were placed in an oven at 40°C

for 6 hours, followed by 3 hours at 120°C to obtain full cure.
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2.1. Sample Preparation

A masterbatch of pre-dispersed carbon nanotubes has been prepared using the

procedure described by other authors [9, 24]. Appropriate amounts of unsaturated

polyester resin and masterbatch were compounded to obtain mixtures with CNT

loading ranging from 0.05 to 0.3 wt. %. The dispersion in the UPE resin was

carried out by high shear mixing using a lab-scale setup described in [25]. The

apparatus comprises an overhang stirrer, a flow-through cell and a condenser to limit

styrene evaporation. Each sample was mixed for 420 minutes at 1000 rpm, whilst

the temperature was kept between 30 and 35°C. The extent of styrene evaporation

has been investigated measuring the matrix-dominated high-shear viscosity of the

suspensions prepared [26]. At all the filler loadings the analysis showed no measurable

effect of styrene evaporation during processing.

During processing a peristaltic pump fed the material to a coaxial flow-through

cell designed to measure the resistivity of the liquid [25]. The deviations of resistance

due to temperature variations were corrected by assuming an Arrhenius dependence

of conductivity on temperature and calculating the values of resistivity at a reference

temperature of 34°C, following the procedure described in [25]. The procedure for

on-line measurement of suspension conductivity is reported in [27].

2.2. Microscopic analysis

The quality of dispersion after mixing was assessed by transmission optical mi-

croscopy of the liquid suspension [28]. A sample of 20±1 mg of mixed material

was placed onto a microscope slide and a 16 mm cover slip was positioned on top.

The liquid was uniformly spread over the whole area under the slip. The resulting

thickness of liquid nanocomposite is 90±10 µm. All the samples were analysed with

identical sub-stage illumination.
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Transmission optical microscopy and SEM charge contrast imaging were used to

investigate the morphology of the nanotubes in the cured composites. The samples

for optical microscopy were 100±20 µm thick slices of cured material, cut from the

surface of the sample. The slices were cut using a Buehler Isomet precision sectioning

saw with a diamond wafering blade. The samples for charge contrast imaging were

prepared by painting a thin layer of the suspension, after the addition of cobalt and

peroxide, onto an aluminium stub and oven-curing as described before. Micrographs

of the surface of the samples were taken using a FEI SFEG-SEM at acceleration

voltage 15 kV, working distance 5 mm and TLD detector.

2.3. Electrical measurements

AC impedance spectroscopy was carried out after cure using a Solartron SI 1260

frequency response analyser. An interdigitated copper sensor (GIA sensors, Pear-

son Panke) was embedded in the material by immersion in a glass tube containing

the liquid resin, previously mixed with cobalt and peroxide. The glass tube was

placed in a heated cell and cured using the thermal profile described previously. The

measurements were performed after cure completion, at temperature of 40°C, in the

frequency range between 1 Hz and 1 MHz measuring five frequencies per decade on

a logarithmic scale. The AC conductivity σ of the sample was calculated from the

real and imaginary parts of complex impedance (Z⋆) as follows:

σ(ω) =
l

|Z⋆(ω)|
(4)

where ω is the angular frequency and l = 3.93 m−1 is the geometric constant of the

sensor [29].

The DC electrical conductivity of the cured materials was determined by a two-

point measurement. The two parallel faces of a cylinder of cured material (diameter

8 mm, height 4 mm) were painted with a suspension of silver in methyl isobutyl
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ketone (Acheson Electrodag 1415M). After complete evaporation of the solvent, the

value of resistance was measured at 20°C. High resistance samples, i.e. the neat resin,

were characterised with a Keithley 6517A electrometer. Low resistance samples, i.e.

nanocomposites, were characterised with a DC precision current source (Keithley

6220) and a nanovoltmeter (Keithley 2182A) using the three-point delta current

reversal technique [30]. The DC conductivity of each sample has been measured four

times on four different cylinders at each level of loading, calculating the corresponding

standard deviations. The process of dispersion and cure has been replicated for

two levels of loading, randomly chosen, namely 0.25 wt. % and 0.3 wt. %. The

replicability of the process of preparation of the nanocomposite has been confirmed by

the absence of statistically significant difference betweeen the mean DC conductivity

of replications.

3. Results and discussion

3.1. Dispersion of CNT
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Figure 1: Evolution of liquid resistivity during the mixing of a resin suspensions.
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The evolution of the liquid resistivity of a sample during processing is shown in

figure 1. The evolution of resistivity for the 0.05 wt. % suspension is similar to

the 0.1 wt. % loading, but the inclusion of air bubbles during mixing caused a high

noise-to-signal ratio. The mixing at 0.05 wt. % has been excluded from the graph

for better clarity.

At the beginning of the process the resistivity is in the order of several MΩm,

and decreases slowly with mixing. After an incubation period, whose duration varies

with the filler content (e.g. about 50 minutes in the sample containing 0.2 wt. %

CNT), the resistivity falls. The magnitude of the decrease is correlated with the filler

loading of each mixture. This is followed by a steady decrease until the end of the

process. The value of liquid resistivity at the end of processing varies between 4.2

MΩ and 24.7 kΩ at 0.1 and 0.3 wt. %, respectively.

The incubation period corresponds to the time necessary for individually dis-

persed CNTs to reach the onset of percolation. The amount of individually dispersed

nanotubes at a certain time of processing is higher for suspensions with higher filler

loading. The interpretation of the liquid suspensions in terms of percolation explains

the sharp fall of resistivity observed for loadings 0.2 wt. % and above, which is typical

of such systems at percolation. The downward trend in the final part of processing

suggests that dispersion is not complete after 420 minutes of mixing.

Figure 2 illustrates the filler dispersion during the mixing of the 0.15 wt. %

suspension. Clusters of undispersed nanotubes appear as isolated dark particles.

The dimension of these particles decreases with mixing. Dark areas with size of

several tens of micrometres are observed after 160 minutes. At the end of processing

the suspension appears homogeneous and optically dispersed [28], with dimension

of residual clusters of undispersed nanotubes below 5 micrometres. The total area

covered by the residual clusters appears small compared to the samples before shear
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Figure 2: Optical micrographs of 0.15 wt. % suspension before, during and after
mixing.

mixing (not shown here) and the residual area is similar between all loadings. The

existence of undispersed nanotube clusters corroborates the suggestion of incomplete

dispersion based on the continuous drop of liquid resistivity.

3.2. Morphology of CNT in cured nanocomposites

(a) (b)

Figure 3: Nanocomposite containing 0.15 wt. % of carbon nanotubes: (a) transmis-
sion light micrograph (b) charge contrast imaging.

Figure 3a shows the microstructure of the cured nanocomposite containing 0.15

wt. % . This loading has been selected to show and to compare reaggregation at mi-

croscale and nanoscale, as the best compromise between high conductivity required
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for contrast charge imaging and optical transmission required for optical microscopy.

The existence of an heterogeneous structure comprising areas of high and low nan-

otube content is observed with optical microscopy. The low brightness regions, cor-

responding to relatively higher nanotube content, cover a significant percentage of

the sample area indicating the existence of aggregates of a different nature to those

originally mixed with the resin. These aggregates, which are formed during the cure

of the material, are not as tightly packed as the original clusters. Charge contrast

imaging can be used to visualise the morphology of the reaggregated nanotubes em-

bedded in the resin in the proximity of the sample surface [31, 32]. Figure 3b is

a representative example of the structure of such secondary agglomerate. Its size

is about 10 µm and it comprises an assembly of loosely packed nanotubes. Since

the tubes are wavy and entangled, a precise evaluation of their length is not possi-

ble. However, most of the visible nanotubes appear to be longer than the nominal

length of 1.5 µm, suggesting that carbon nanotubes have not been damaged during

processing.

3.3. Electrical behaviour

Impedance spectroscopy has been used to evaluate the AC conductivity of com-

posites at the end of cure, as shown in figure 4. The neat cured resin follows a purely

capacitive behaviour at all frequencies. The nanocomposite with loading of 0.05 wt.

% exhibits a frequency independent conductivity up to 104 Hz, which changes to a

capacitive response at high frequencies. The nanocomposites with nanotubes load-

ing greater than 0.1 wt. % show a predominantly resistive electrical behaviour, with

constant conductivity over the whole range of frequencies investigated.

The effect of filler loading on the DC conductivity of the solid composites is

shown in figure 5a. The neat resin is an insulating material, with an electrical
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Figure 4: AC conductivity at the end of curing as a function of frequency for different
filler loadings.

conductivity in the order of 10−12 S/m. Addition of 0.05 wt. % of filler increases the

electrical conductivity by eight orders of magnitude, to the value of 2.7 · 10−4 S/m.

Conductivity increases further with higher loading, up to 1.3·10−1 S/m at the highest

loading tested. The values of DC conductivity are in agreement with the values of

AC conductivity measured by impedance spectroscopy. The conductivity of the

liquid suspensions at the end of processing is compared with the conductivity of the

nanocomposite in figure 5a. The values in the two cases differ by a factor of about 104.

It is interesting to note that the two trends imply a positive correlation between liquid

and solid conductivity. This specific subject has not been developed within this study

and will be the subject of further investigation . However, the experimental data

suggest that the electric behaviour of liquid suspensions and solid nanocomposites

are controlled by percolation in similar manners. Liquid conductivity measurements

during processing might potentially be exploited to predict the final conductivity of
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Figure 5: (a) DC conductivity as a function of filler loading. Error bars denote
three times the standard deviations of nanocomposites and one time the standard
deviation of neat resin. Circles denote the liquid conductivity of suspensions at the
end of mixing. (b) Fitting of DC conductivities according to equation 1.

the corresponding nanocomposite. The solid nanocomposites show the characteristics

of a percolating system. Conductivity at various loading has been fitted to the model

of statistical percolation described by equation 3, resulting in a percolation threshold

of 0.026 wt. % and a critical exponent of 2.55. The value of percolation threshold

is significantly lower that the value predicted by statistical percolation theory (0.96

wt. %). This suggest that the electrical properties of the CNT-unsaturated polyester

composite are enhanced by the spontaneous reaggregation of filler particles during

cure, as previously reported for CNT/epoxy systems.

The electrical properties of the material described in this study have been com-

pared with the data published in literature. The percolation threshold observed

compares well with the best results obtained with entangled MWNT in different

polymers, i.e. epoxy, polyurethane and vinyl esters [9, 10]. The value is forty

times lower than the 1 wt. % previously observed for entangled MWNT/unsaturated
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polyester systems and four times lower than the 0.1 wt. % observed for non-entangled

MWNT/unsaturated polyester systems [8]. Given the simple preparation process,

the low cost of the resin and the electrical conductivity achieved, CNT/unsaturated

polyester nanocomposites hold potential for the production of electrically conductive

composites.

4. Conclusion

The preparation of microscopically uniform unsaturated polyester nanocompos-

ites based on industrial grade multi-walled nanotubes has been carried out success-

fully using a combination of triple roll milling and shear mixing. The resistivity

of the liquid composite has been measured to monitor the evolution of dispersion

during processing. The on-line data showed that, after an incubation period that

is correlated to the filler loading, the resistivity of the suspension decreases steadily

until the end of the process. The magnitude of the drop is also positively correlated

to the filler loading. This is followed by a gradual decrease which is attributed to the

existence of residual undispersed clusters of nanotubes. The value of conductivity of

the liquid suspension at the end of mixing is directly correlated to the filler loading

and the final value of conductivity of the nanocomposites.

The final level of dispersion achieved was adequate to create a conductive network

whilst preserving the high aspect ratio of filler particles. Well dispersed suspensions

of nanotubes in unsaturated polyester form a spatial structure of agglomerates during

cure which results in a percolation threshold of 0.026 wt. %. The cured nanocom-

posite has maximum conductivity of 0.13 S/m for 0.3 wt. % CNT loading.
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