31 research outputs found

    Social media marketing strategy: definition, conceptualization, taxonomy, validation, and future agenda

    Get PDF
    Although social media use is gaining increasing importance as a component of firms’ portfolio of strategies, scant research has systematically consolidated and extended knowledge on social media marketing strategies (SMMSs). To fill this research gap, we first define SMMS, using social media and marketing strategy dimensions. This is followed by a conceptualization of the developmental process of SMMSs, which comprises four major components, namely drivers, inputs, throughputs, and outputs. Next, we propose a taxonomy that classifies SMMSs into four types according to their strategic maturity level: social commerce strategy, social content strategy, social monitoring strategy, and social CRM strategy. We subsequently validate this taxonomy of SMMSs using information derived from prior empirical studies, as well with data collected from in-depth interviews and a quantitive survey among social media marketing managers. Finally, we suggest fruitful directions for future research based on input received from scholars specializing in the field

    S-D logic-informed customer engagement: Integrative framework, revised fundamental propositions, and application to CRM

    Get PDF
    Advance online in 2016</p

    Psychosocial Stress Hastens Disease Progression and Sudden Death in Mice with Arrhythmogenic Cardiomyopathy

    No full text
    Physiological stressors, such as exercise, can precipitate sudden cardiac death or heart failure progression in patients with arrhythmogenic cardiomyopathy (ACM). Yet, whether and to what extent a highly prevalent and more elusive environmental factor, such as psychosocial stress (PSS), can also increase ACM disease progression is unexplored. Here, we first quantified perceived stress levels in patients with ACM and found these levels correlated with the extent of arrhythmias and cardiac dysfunction. To determine whether the observed correlation is due to causation, we inflicted PSS-via the resident-intruder (RI) paradigm-upon Desmoglein-2 mutant mice, a vigorously used mammalian model of ACM. We found that ACM mice succumbed to abnormally high in-trial, PSS mortality. Conversely, no sudden deaths occurred in wildtype (WT) counterparts. Desmoglein-2 mice that survived RI challenge manifested markedly worse cardiac dysfunction and remodeling, namely apoptosis and fibrosis. Furthermore, WT and ACM mice displayed similar behavior at baseline, but Desmoglein-2 mice exhibited heightened anxiety following RI-induced PSS. This outcome correlated with the worsening of cardiac phenotypes. Our mouse model demonstrates that in ACM-like subjects, PSS is incisive enough to deteriorate cardiac structure and function per se, i.e., in the absence of any pre-existing anxious behavior. Hence, PSS may represent a previously underappreciated risk factor in ACM disease penetrance

    The necrosome promotes pancreatic oncogenesis via CXCL1 and Mincle-induced immune suppression

    No full text
    Neoplastic pancreatic epithelial cells are believed to die through caspase 8-dependent apoptotic cell death, and chemotherapy is thought to promote tumour apoptosis. Conversely, cancer cells often disrupt apoptosis to survive. Another type of programmed cell death is necroptosis (programmed necrosis), but its role in pancreatic ductal adenocarcinoma (PDA) is unclear. There are many potential inducers of necroptosis in PDA, including ligation of tumour necrosis factor receptor 1 (TNFR1), CD95, TNF-related apoptosis-inducing ligand (TRAIL) receptors, Toll-like receptors, reactive oxygen species, and chemotherapeutic drugs. Here we report that the principal components of the necrosome, receptor-interacting protein (RIP)1 and RIP3, are highly expressed in PDA and are further upregulated by the chemotherapy drug gemcitabine. Blockade of the necrosome in vitro promoted cancer cell proliferation and induced an aggressive oncogenic phenotype. By contrast, in vivo deletion of RIP3 or inhibition of RIP1 protected against oncogenic progression in mice and was associated with the development of a highly immunogenic myeloid and T cell infiltrate. The immune-suppressive tumour microenvironment associated with intact RIP1/RIP3 signalling depended in part on necroptosis-induced expression of the chemokine attractant CXCL1, and CXCL1 blockade protected against PDA. Moreover, cytoplasmic SAP130 (a subunit of the histone deacetylase complex) was expressed in PDA in a RIP1/RIP3-dependent manner, and Mincle--its cognate receptor--was upregulated in tumour-infiltrating myeloid cells. Ligation of Mincle by SAP130 promoted oncogenesis, whereas deletion of Mincle protected against oncogenesis and phenocopied the immunogenic reprogramming of the tumour microenvironment that was induced by RIP3 deletion. Cellular depletion suggested that whereas inhibitory macrophages promote tumorigenesis in PDA, they lose their immune-suppressive effects when RIP3 or Mincle is deleted. Accordingly, T cells, which are not protective against PDA progression in mice with intact RIP3 or Mincle signalling, are reprogrammed into indispensable mediators of anti-tumour immunity in the absence of RIP3 or Mincle. Our work describes parallel networks of necroptosis-induced CXCL1 and Mincle signalling that promote macrophage-induced adaptive immune suppression and thereby enable PDA progression
    corecore