3,033 research outputs found

    s/alpha/Fe Abundance Ratios in Halo Field Stars: Is there a Globular Cluster Connection?

    Full text link
    We try to understand the s- and r-process elements vs Ti/Fe plots derived by Jehin et al. (1999) for mildly metal-poor stars within the framework of the analytical semi-empirical models for these elements by Pagel & Tautvaisiene (1995, 1997). Jehin et al. distinguished two Pop II subgroups: IIa with alpha/Fe and s-elements/Fe increasing together, which they attribute to pure SNII activity, and IIb with constant alpha/Fe and a range in s/Fe which they attribute to a prolonged accretion phase in parent globular clusters. However, their sample consists mainly of thick-disk stars with only 4 clear halo members, of which two are `anomalous' in the sense defined by Nissen & Schuster (1997). Only the remaining two halo stars (and one in Nissen & Schuster's sample) depart significantly from Y/Ti (or s/alpha) ratios predicted by our model.Comment: 6 pages, 5 figures To appear in: Roma-Trieste Workshop 1999: `The Chemical Evolution of the Milky Way: Stars vs Clusters', Vulcano Sept. 1999. F. Giovanelli & F. Matteucci (eds), Kluwer, Dordrech

    Letter to Sound Rules for Accented Lexicon Compression

    Get PDF
    This paper presents trainable methods for generating letter to sound rules from a given lexicon for use in pronouncing out-of-vocabulary words and as a method for lexicon compression. As the relationship between a string of letters and a string of phonemes representing its pronunciation for many languages is not trivial, we discuss two alignment procedures, one fully automatic and one hand-seeded which produce reasonable alignments of letters to phones. Top Down Induction Tree models are trained on the aligned entries. We show how combined phoneme/stress prediction is better than separate prediction processes, and still better when including in the model the last phonemes transcribed and part of speech information. For the lexicons we have tested, our models have a word accuracy (including stress) of 78% for OALD, 62% for CMU and 94% for BRULEX. The extremely high scores on the training sets allow substantial size reductions (more than 1/20). WWW site: http://tcts.fpms.ac.be/synthesis/mbrdicoComment: 4 pages 1 figur

    Varying leptonic chemical potentials and spatial variation of primordial deuterium at high z

    Full text link
    We try to explain the spatial variation of primordial deuterium suggested by some observations by varying leptonic chemical potentials. The variation of the latter may take place in some scenarios of leptogenesis. The model predicts a large mass fraction of 4He^4 He (35-60%) and 7Li^7 Li (up to 10−910^{-9}) in deuterium-rich regions. Because of lepton family symmetry, the angular variations of cosmic microwave background radiation can be sufficiently small although still observable in future measurements.Comment: 16 pages, late

    Nonequilibrium quantum fluctuation relations for harmonic systems in nonthermal environments

    Full text link
    We formulate exact generalized nonequilibrium fluctuation relations for the quantum mechanical harmonic oscillator coupled to multiple harmonic baths. Each of the different baths is prepared in its own individual (in general nonthermal) state. Starting from the exact solution for the oscillator dynamics we study fluctuations of the oscillator position as well as of the energy current through the oscillator under general nonequilibrium conditions. In particular, we formulate a fluctuation-dissipation relation for the oscillator position autocorrelation function that generalizes the standard result for the case of a single bath at thermal equilibrium. Moreover, we show that the generating function for the position operator fullfills a generalized Gallavotti-Cohen-like relation. For the energy transfer through the oscillator, we determine the average energy current together with the current fluctuations. Finally, we discuss the generalization of the cumulant generating function for the energy transfer to nonthermal bath preparations.Comment: 21 page

    Automated Virtual Machine Introspection for Host-Based Intrusion Detection

    Get PDF
    This thesis examines techniques to automate configuration of an intrusion detection system utilizing hardware-assisted virtualization. These techniques are used to detect the version of a running guest operating system, automatically configure version-specific operating system information needed by the introspection library, and to locate and monitor important operating system data structures. This research simplifies introspection library configuration and is a step toward operating system independent introspection. An operating system detection algorithm and Windows virtual machine system service dispatch table monitor are implemented using the Xen hypervisor and a modified version of the XenAccess library. All detection and monitoring is implemented from the Xen management domain. Results of the operating system detection are used to initialize the XenAccess library. Library initialization time and kernel symbol retrieval are compared to the standard library. The algorithm is evaluated using nine versions of the Windows operating system. The system service dispatch table monitor is evaluated using the Agony and ProAgent rootkits. The automation techniques successfully detect the operating system and system service dispatch table hooks for the nine Windows versions tested. The modified XenAccess library exhibits an average initialization speedup of 1.9. Kernel symbol lookup is 10 times faster, on average. The hook detector is able to detect all hooks used by both rookits

    The Oxygen Abundance of Nearby Galaxies from Sloan Digital Sky Survey Spectra

    Full text link
    We have derived the oxygen abundance for a sample of nearby galaxies in the Data Release 5 of the Sloan Digital Sky Survey (SDSS) which possess at least two independent spectra of one or several HII regions with a detected [OIII]4363 auroral line. Since, for nearby galaxies, the [OII]3727 nebular line is out of the observed wavelength range, we propose a method to derive (O/H)_ff abundances using the classic Te method coupled with the ff relation. (O/H)_7325 abundances have also been determined, based on the [OII]7320,7330 line intensities, and using a small modification of the standard Te method. The (O/H)_ff and (O/H)_7325 abundances have been derived with both the one- and two-dimensional t_2 - t_3 relations. It was found that the (O/H)_ff abundances derived with the parametric two-dimensional t_2 - t_3 relation are most reliable. Oxygen abundances have been determined in 29 nearby galaxies, based on 84 individual abundance determinations in HII regions. Because of our selection methods, the metallicity of our galaxies lies in the narrow range 8.2 < 12 + log (O/H) < 8.4. The radial distribution of oxygen abundances in the disk of the spiral galaxy NGC 4490 is determined for the first time.Comment: 39 pages, 10 figures, 4 tables, accepted for publication in the Astrophysical Journa

    Design and fabrication of a radiative actively cooled honeycomb sandwich structural panel for a hypersonic aircraft

    Get PDF
    The panel assembly consisted of an external thermal protection system (metallic heat shields and insulation blankets) and an aluminum honeycomb structure. The structure was cooled to temperature 442K (300 F) by circulating a 60/40 mass solution of ethylene glycol and water through dee shaped coolant tubes nested in the honeycomb and adhesively bonded to the outer skin. Rene'41 heat shields were designed to sustain 5000 cycles of a uniform pressure of + or - 6.89kPa (+ or - 1.0 psi) and aerodynamic heating conditions equivalent to 136 kW sq m (12 Btu sq ft sec) to a 422K (300 F) surface temperature. High temperature flexible insulation blankets were encased in stainless steel foil to protect them from moisture and other potential contaminates. The aluminum actively cooled honeycomb sandwich structural panel was designed to sustain 5000 cycles of cyclic in-plane loading of + or - 210 kN/m (+ or - 1200 lbf/in.) combined with a uniform panel pressure of + or - 6.89 kPa (?1.0 psi)

    A study of magnetic fluctuations and their anomalous scaling in the solar wind: the Ulysses fast-latitude scan

    Get PDF
    The solar wind is a highly turbulent and intermittent medium at frequencies between 10<sup>-4</sup> and 10<sup>-1</sup> Hz. Power spectra are used to look at fluctuations in the components of the magnetic field at high frequencies over a wide range of latitudes. Results show steady turbulence in the polar regions of the Sun and a more varied environment in the equatorial region. The magnetic field fluctuations exhibit anomalous scaling at high frequencies. Various models have been proposed in an attempt to better understand the scaling nature of such fluctuations in neutral fluid turbulence. We have used the Ulysses fast latitude scan data to perform a wide ranging comparison of three such models on the solar wind magnetic field data: the well-known P model, in both its Kolmogorov and Kraichnan forms, the lognormal cascade model and a model adapted from atmospheric physics, the G infinity model. They were tested by using fits to graphs of the structure function exponents g(q), by making a comparison with a non-linear measure of the deviation of g(q) from the non-intermittent straight line, and by using extended self similarity technique, over a large range of helio-latitudes. Tests of all three models indicated a high level of intermittency in the fast solar wind, and showed a varied structure in the slow wind, with regions of apparently little intermittency next to regions of high intermittency, implying that the slow wind has no uniform origin. All but one of the models performed well, with the lognormal and Kolmogorov P model performing the best over all the tests, indicating that inhomogeneous energy transfer in the cascade is a good description. The Kraichnan model performed relatively poorly, and the overall results show that the Kraichnan model of turbulence is not well supported over the frequency and distance ranges of our data set. The G infinity model fitted the results surprisingly well and showed that there may very well be important universal geometrical aspects of intermittency over many physical systems

    Schools: still a gaping hole in the English covid strategy

    Get PDF
    • 

    corecore