512 research outputs found

    Analytical challenges in estimating the effect of exposures that are bounded by follow-up time: experiences from the Blood Stream Infection—Focus on Outcomes study

    Get PDF
    Abstract Objective To illustrate the challenges of estimating the effect of an exposure that is bounded by duration of follow-up on all-cause 28-day mortality, whilst simultaneously addressing missing data and time-varying covariates. Study design and methods BSI-FOO is a multicentre cohort study with the primary aim of quantifying the effect of modifiable risk factors, including time to initiation of therapy, on all-cause 28-day mortality in patients with bloodstream infection. The primary analysis involved two Cox proportional hazard models, first one for non-modifiable risk factors and second one for modifiable risk factors, with a risk score calculated from the first model included as a covariate in the second model. Modifiable risk factors considered in this study were recorded daily for a maximum of 28 days after infection. Follow-up was split at daily intervals from day 0 to 28 with values of daily collected data updated at each interval (i.e., one row per patient per day). Analytical challenges Estimating the effect of time to initiation of treatment on survival is analytically challenging since only those who survive to time t can wait until time t to start treatment, introducing immortal time bias. Time-varying covariates representing cumulative counts were used for variables bounded by survival time e.g. the cumulative count of days before first receipt of treatment. Multiple imputation using chained equations was used to impute missing data, using conditional imputation to avoid imputing non-applicable data e.g. ward data after discharge. Conclusion Using time-varying covariates represented by cumulative counts within a one row per day per patient framework can reduce the risk of bias in effect estimates. The approach followed uses established methodology and is easily implemented in standard statistical packages

    Effects of common mutations in the SARS-CoV-2 Spike RBD and its ligand the human ACE2 receptor on binding affinity and kinetics

    Get PDF
    The interaction between the SARS-CoV-2 virus Spike protein receptor binding domain (RBD) and the ACE2 cell surface protein is required for viral infection of cells. Mutations in the RBD are present in SARS-CoV-2 variants of concern that have emerged independently worldwide. For example, the B.1.1.7 lineage has a mutation (N501Y) in its Spike RBD that enhances binding to ACE2. There are also ACE2 alleles in humans with mutations in the RBD binding site. Here we perform a detailed affinity and kinetics analysis of the effect of five common RBD mutations (K417N, K417T, N501Y, E484K, and S477N) and two common ACE2 mutations (S19P and K26R) on the RBD/ACE2 interaction. We analysed the effects of individual RBD mutations and combinations found in new SARS-CoV-2 Alpha (B.1.1.7), Beta (B.1.351), and Gamma (P1) variants. Most of these mutations increased the affinity of the RBD/ACE2 interaction. The exceptions were mutations K417N/T, which decreased the affinity. Taken together with other studies, our results suggest that the N501Y and S477N mutations enhance transmission primarily by enhancing binding, the K417N/T mutations facilitate immune escape, and the E484K mutation enhances binding and immune escape

    Missense variants in human ACE2 strongly affect binding to SARS-CoV-2 Spike providing a mechanism for ACE2 mediated genetic risk in Covid-19:A case study in affinity predictions of interface variants

    Get PDF
    SARS-CoV-2 Spike (Spike) binds to human angiotensin-converting enzyme 2 (ACE2) and the strength of this interaction could influence parameters relating to virulence. To explore whether population variants in ACE2 influence Spike binding and hence infection, we selected 10 ACE2 variants based on affinity predictions and prevalence in gnomAD and measured their affinities and kinetics for Spike receptor binding domain through surface plasmon resonance (SPR) at 37°C. We discovered variants that reduce and enhance binding, including three ACE2 variants that strongly inhibited (p.Glu37Lys, ΔΔG = –1.33 ± 0.15 kcal mol(-1) and p.Gly352Val, predicted ΔΔG = –1.17 kcal mol(-1)) or abolished (p.Asp355Asn) binding. We also identified two variants with distinct population distributions that enhanced affinity for Spike. ACE2 p.Ser19Pro (ΔΔG = 0.59 ± 0.08 kcal mol(-1)) is predominant in the gnomAD African cohort (AF = 0.003) whilst p.Lys26Arg (ΔΔG = 0.26 ± 0.09 kcal mol(-1)) is predominant in the Ashkenazi Jewish (AF = 0.01) and European non-Finnish (AF = 0.006) cohorts. We compared ACE2 variant affinities to published SARS-CoV-2 pseudotype infectivity data and confirmed that ACE2 variants with reduced affinity for Spike can protect cells from infection. The effect of variants with enhanced Spike affinity remains unclear, but we propose a mechanism whereby these alleles could cause greater viral spreading across tissues and cell types, as is consistent with emerging understanding regarding the interplay between receptor affinity and cell-surface abundance. Finally, we compared mCSM-PPI2 ΔΔG predictions against our SPR data to assess the utility of predictions in this system. We found that predictions of decreased binding were well-correlated with experiment and could be improved by calibration, but disappointingly, predictions of highly enhanced binding were unreliable. Recalibrated predictions for all possible ACE2 missense variants at the Spike interface were calculated and used to estimate the overall burden of ACE2 variants on Covid-19

    Modifiable healthcare factors affecting 28-day survival in bloodstream infection: a prospective cohort study

    Get PDF
    Background: Bloodstream infection is common in the UK and has significant mortality depending on the pathogen involved, site of infection and other patient factors. Healthcare staffing and ward activity may also impact on outcomes in a range of conditions, however there is little specific National Health Service (NHS) data on the impact for patients with bloodstream infection. Bloodstream Infections – Focus on Outcomes is a multicentre cohort study with the primary aim of identifying modifiable risk factors for 28-day mortality in patients with bloodstream infection due to one of six key pathogens. Methods: Adults under the care of five NHS Trusts in England and Wales between November 2010 and May 2012 were included. Multivariable Cox regression was used to quantify the association between modifiable risk factors, including staffing levels and timing of appropriate therapy, and 28-day mortality, after adjusting for non-modifiable risk factors such as patient demographics and long-term comorbidities. Results: A total of 1676 patients were included in the analysis population. Overall, 348/1676 (20.8%) died within 28 days. Modifiable factors associated with 28-day mortality were ward speciality, ward activity (admissions and discharges), movement within ward speciality, movement from critical care, and time to receipt of appropriate antimicrobial therapy in the first 7 days. For each additional admission or discharge per 10 beds, the hazard increased by 4% (95% CI 1 to 6%) in medical wards and 11% (95% CI 4 to 19%) in critical care. Patients who had moved wards within speciality or who had moved out of a critical care ward had a reduction in hazard of mortality. In the first 7 days, hazard of death increased with increasing time to receipt of appropriate antimicrobial therapy. Conclusion: This study underlines the importance of appropriate antimicrobials within the first 7 days, and the potential for ward activity and ward movements to impact on survival in bloodstream infection
    • …
    corecore