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Analytical challenges in estimating the effect 
of exposures that are bounded by follow‑up 
time: experiences from the Blood Stream 
Infection—Focus on Outcomes study
Rebecca Evans1*, Katie Pike1, Alasdair MacGowan2 and Chris A. Rogers1 

Abstract 

Objective:  To illustrate the challenges of estimating the effect of an exposure that is bounded by duration of follow-
up on all-cause 28-day mortality, whilst simultaneously addressing missing data and time-varying covariates.

Study design and methods:  BSI-FOO is a multicentre cohort study with the primary aim of quantifying the effect of 
modifiable risk factors, including time to initiation of therapy, on all-cause 28-day mortality in patients with blood-
stream infection. The primary analysis involved two Cox proportional hazard models, first one for non-modifiable 
risk factors and second one for modifiable risk factors, with a risk score calculated from the first model included as a 
covariate in the second model. Modifiable risk factors considered in this study were recorded daily for a maximum 
of 28 days after infection. Follow-up was split at daily intervals from day 0 to 28 with values of daily collected data 
updated at each interval (i.e., one row per patient per day).

Analytical challenges:  Estimating the effect of time to initiation of treatment on survival is analytically challenging 
since only those who survive to time t can wait until time t to start treatment, introducing immortal time bias. Time-
varying covariates representing cumulative counts were used for variables bounded by survival time e.g. the cumula-
tive count of days before first receipt of treatment. Multiple imputation using chained equations was used to impute 
missing data, using conditional imputation to avoid imputing non-applicable data e.g. ward data after discharge.

Conclusion:  Using time-varying covariates represented by cumulative counts within a one row per day per patient 
framework can reduce the risk of bias in effect estimates. The approach followed uses established methodology and is 
easily implemented in standard statistical packages.
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Key points

•	 Estimating the effect of an exposure that is bounded 
by survival time on mortality can produce biased 
estimates.

•	 Using time-varying covariates to represent cumula-
tive counts in a survival analysis can reduce the risk 
of bias in effect estimates.

•	 The approach described uses established methodol-
ogy, so is easily implemented in standard statistical 
packages

Background
Estimating the effect of time to initiation of treatment on 
survival is analytically challenging since it requires the 
person to survive until the date they receive treatment. 
This means that only those who survive a long time can 
wait a long time to start treatment and those that die 
shortly after start of follow-up have not had the opportu-
nity to be exposed to a long time to initiation. This intro-
duces a form of time-dependent bias known as immortal 
time bias, a bias that arises when there is a period of fol-
low-up in which the outcome e.g. death cannot occur. In 
the example of time to initiation of treatment, a person 
who starts treatment on day 7 is considered “immortal” 
for the first 7 days.

Different approaches to control for the bias that arises 
when estimating the effect of treatment initiation on 
outcome have been studied in the statistical literature 
by several authors. Zheng Zou et al.compared methods 
to control for survival bias associated with treatment 
initiation [1]. One method classified patients into users 
(those who started treatment) and non-users (those 
who did not start treatment) at the end of follow-up. 
However this resulted in an overestimate of the treat-
ment effect as patients’ future exposure was used to 
define the groups and therefore the event-free time in 
the user group was inflated. Another approach pro-
posed was to start follow-up after a given exposure time 
(e.g., 90  days) allowing all patients 90  days exposure 
to start treatment. Patients who experience the event 
within the 90  days exposure are excluded, and those 
who do not experience the event within the 90  days 
are classified into users and non-users at this time and 
followed up from the end of this exposure time. How-
ever, this method loses a lot of study information (the 
first 90 days follow-up is excluded). The final approach 
described used a time-dependent variable for treatment 
which assigned the value of the treatment variable as 0 
before the time of first treatment and changes to 1 when 
the treatment starts. For the non-user, the value remains 

as 0 throughout the whole follow-up. This method accu-
rately represented the exposure status without the need 
to exclude participants and has shown to reduce bias in 
other studies [2–5]. For example, estimates from a time-
dependent model provided estimates closest to the true 
treatment effect in a study to assess the effectiveness of 
postmastectomy radiation therapy in patients with can-
cer whilst controlling for variations in the timing of ini-
tiation of radiation therapy [6].

The aim of this paper is to illustrate the challenges of 
analysing an exposure that is bounded by survival time, 
simultaneously to other analytical challenges such as 
missing data and time-varying covariates through the 
use of a case study of an observational study investigat-
ing modifiable risk factors for mortality in bloodstream 
infection (BSI).

Bloodstream infection (BSI) is common in the UK and 
at least 100,000 patients have an episode of BSI in Eng-
land, Wales and Northern Ireland each year [7]. The 
death rate from these infections can reach 15–25% at 
30 days post-infection and 50% at 3 years depending on 
the pathogen involved, site of infection and other patient 
factors [8–10]. A number of non-modifiable patient fac-
tors (e.g. comorbidities and infection severity) are known 
to impact adversely on outcome [8, 11, 12]. However, 
to date there are no specific NHS studies exploring the 
impact of modifiable risk factors such as ward staffing 
levels, movements between wards and workload on out-
comes in patients with a BSI.

Bloodstream Infections – Focus on Outcomes (BSI-
FOO) was a multicentre, prospective cohort study 
with the primary objective of identifying modifiable 
risk factors associated with all-cause mortality in 
patients with a BSI. The study has been described in 
detail previously [13].

The aim of the current article is to illustrate the statisti-
cal challenges of analysing an exposure that is bounded 
by survival time whilst simultaneously addressing other 
analytical challenges such as missing data and time-
varying covariates. We evaluate the use of multiple 
imputation, multivariable fractional polynomials and 
time-varying covariates; in data where having the out-
come/censoring reduces the duration of exposure to the 
risk factors of interest.

Methods
Data sources
BSI-FOO was a multicentre, prospective cohort study in 
hospitalised adult patients with clinically significant BSI. 
The primary aim of the study was to quantify the effect of 
modifiable factors on all-cause 28-day mortality (includ-
ing deaths after hospital discharge). The results of the 
study have been published elsewhere [13].
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Population
After excluding repeat episodes and polymicrobial infec-
tions, a total of 1,676 patients recruited from 5 centres 
across England and Wales were included in the study 
analysis. The median age was 68.5  years (interquar-
tile range (IQR) 53.0 to 80.0) and 55% of the patients 
(919/1676) were male. The overall 28-day case-fatality 
was 20.8% (95% CI: 18.8%—22.8%).

Follow‑up
The start of follow-up began when the first positive blood 
sample confirming BSI was taken from the patient. This 
was defined as the start of the infection episode and is 
referred to as day 0 and time 0. Data collection ran from 
day 0 until day 28 or hospital discharge or death if earlier.

Data collected on non‑modifiable risk factors
Data items relating to patients’ health and care up to the 
start of the infection episode were considered non-mod-
ifiable. We considered all data items that were collected 
as part of the study which included: patient demography; 
date admitted to hospital; prior residence in nursing or 
care home; recent medical history; long-term comorbid-
ities; measures of illness severity at or shortly before day 
0; and speciality of consultant on day 0 (Table 1).

Data collected on modifiable risk factors
The modifiable risk factors considered were aspects of 
hospital care received during the follow-up and included: 
i) ward staffing levels, ward activity (i.e. number of 
admissions/discharges) and patient movements between 
wards; (ii) antimicrobial use (e.g. timing of start of appro-
priate therapy); (iii) use of intravenous lines and cathe-
ters. Ward level variables i.e. staffing levels, ward activity 
and movements between wards were recorded daily for 
each patient up to day 7 and antimicrobial use and use of 
intravenous lines and catheters were assessed daily up to 
day 28 (Table 2).

Antimicrobial therapy was defined as ‘appropriate’ if 
the organism was susceptible to the antimicrobial pre-
scribed and the therapy was continued for at least 36 
hours [13, 14]. Consecutive appropriate antimicrobials 
were treated as a single period of appropriate therapy, 
provided that the subsequent therapy began within 24 h 
of the last dose of the previous therapy [13].

Analysis approach
The primary analysis involved building two Cox propor-
tional hazards models, one for non-modifiable risk fac-
tors and one for the modifiable risk factors.

Firstly, a Cox proportional hazards model was fit-
ted with an outcome of death within 28 days of BSI and 

the non-modifiable risk factors as explanatory variables. 
The risk factors considered for inclusion in the model 
were all time-invariant (i.e. measured at one point in 
time) and are given in Table  1, with factors included in 
the final multivariable model identified using backwards 
selection with a 20% significance level to ensure the risk 
score encompassed the most important non-modifiable 
risk factors for mortality. This model was used to derive 
a risk score for each patient. Then, the second Cox pro-
portional hazards model was fitted with an outcome of 
death within 28 days of BSI and the modifiable risk fac-
tors (Table 2) and risk score derived from the first model 
included as covariates. In this second model all modifi-
able risk factors were included regardless of statistical 
significance as they were all of clinical interest. In addi-
tion, the following pre-specified interaction terms were 
considered for potential inclusion in the model—organ-
ism by: risk score, presence of central line, presence of 
peripheral line, presence of urinary catheter, time to 
appropriate antimicrobial therapy; and ward specialty by: 
ward activity, ward staffing levels, within-ward speciality 
movements. A forward stepwise approach was taken to 
select which interactions were to be included in the final 
model, using likelihood ratio tests and 10% significance 
levels to compare nested models. The model selection 
process was performed on a single randomly selected 
imputed dataset so that log-likelihood statistics could 
be calculated and compared. Interaction terms between 
ward speciality and: a) ward activity and b) staffing levels, 
were included in the model regardless of statistical sig-
nificance to allow estimation of effects within each ward 
specialty.

Schoenfeld residuals and log–log plots of survival were 
used to assess the proportional hazards assumption [15]. 
If the assumption was not met, time was categorised into 
periods where proportional hazards appeared valid, and 
the effect of the variable causing non-proportional haz-
ards estimated separately for each of the categorised time 
periods. Collinearity was examined using the variance 
inflation factor with values < 5 considered acceptable [16].

Analysis challenges
The analysis presented several challenges, with the added 
complexity that they needed to be addressed simultane-
ously. Analysis challenges and how they were addressed 
are discussed below:

Missing data (multiple imputation)
Individual data items were missing for between 10 and 
45% of patients. Fully conditional specification (FCS) 
multiple imputation was used to impute missing data, 
under the assumption that data was missing at random. 
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Imputation by chained equations, an iterative procedure 
to generate imputed values, was used to generate mul-
tiple complete data sets (using Stata’s -ice- command). 
All variables that were in the primary analysis models 

(modifiable and non-modifiable), variables predictive of 
missingness or the value of variables with missing data 
(Table 1), indicator for death and the log of survival time 
were included in the imputation procedure [17]. Some 

Table 1  Non–modifiable risk factors

a  Speciality of consultant on day 0 was not included as a potential covariate in modelling as it was correlated with day 0 ward speciality, which was of more interest. 
bINR international normalised ratio ceGFR estimated glomerular filtration rate

Type Factors

Organisational Centre (5 centres)
Admission from nursing- or care home
Length of prior in-patient stay (days)
Speciality of consultant on day 0a

Organism / infection Organism identity (target organism group): 6 categories (ESBL 
producer, non-ESBL producing E.coli, MRSA, MSSA, P. aeruginosa and 
Candida)
Source of infection (CDC criteria)

Patient measures Age
Gender
Height (cm)
Weight (kg)

Patient medical history (up to date 0) Leukaemia within 5 years before date 0
Lymphoma within 5 years before date 0
Solid tumour within 5 years before date 0
Any other (second) tumour within 5 years before date 0
Chemotherapy in month before date 0
Surgery requiring overnight stay within 7 days before date 0
Burn requiring hospital admission within 7 days before date 0
Cardiac arrest within 7 days before date 0
Myocardial infarction, symptomatic within 7 days before date 0
Renal support within 7 days before date 0

Patient comorbidities ongoing at date 0 Disease markers
Ascites
Diabetes without organ damage
Diabetes with organ damage
Chronic obstructive pulmonary disease
Congestive heart failure
Connective tissue disease
Cerebrovascular disease
Dementia
Hemiplegia
Peptic ulcer disease
Peripheral vascular disease
Potentially removable sources of infection
Abscess at time 0
Infected foreign body (non-surgical) at time 0
Infected prosthesis or similar surgical item at time 0

Infection severity measures at or nearest before time 0 Signs
Mental Disorientation (scale 0–4) at time 0
Temperature (°C) at time 0
Systolic blood pressure (mmHg) at time 0
Early warning score at time 0
Blood tests
INRb at day0, or nearest within 7 days before
eGFRc (mL/min/1.73 m2) at day 0, or nearest within 7 days before
Serum albumin (g/L) at day0, or nearest within 7 days before
Bilirubin (total, micromol/L) at day0, or nearest within 7 days before
Neutrophil count (× 109/L) at day 0, or nearest within 7 days before
Interventions
Receiving intravenous fluids on day 0, at or before time 0
Receiving artificial ventilation on day 0, at or before time 0
Receiving vasopressor drugs on day 0, at or before time 0
Received systemic corticosteroids in 24 h before time 0
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of the daily collected variables were not applicable after 
discharge/death e.g. ward variables. This was incorpo-
rated into the imputation model by transposing the data 
into wide format (“one row per patient”) and using con-
ditional imputation. Ward variables for each day were 
imputed conditional on patients being alive and in hos-
pital on that day, using data from the other ward vari-
ables on that day only, and using data from the variable 
itself on all other days. For example, ward activity on day 
3 was imputed (conditional on the patient being alive 
and in hospital on day 3) using ward activity on all other 
days, staffing on day 3, ward speciality on day 3, and 
ward movements on day 3.

Non-normally distributed variables were transformed 
prior to imputation, with the most suitable transforma-
tion being selected using Stata’s -gladder- command. If a 
suitable transformation could not be found or the impu-
tation procedure imputed values outside valid ranges, 
then predictive mean matching was used for the imputa-
tion of that variable. The number of imputations, m, was 
set to be equal to the value of the percentage of missing 
data for the variable with the highest proportion of miss-
ing data (m = 45) [18].

Within all analysis models, Rubin’s rule was used to 
summarise data across the imputed datasets [19].

Deriving a risk score for non‑modifiable risk factors
In deriving the risk score representing the non-modifia-
ble risk factors, it was important to ensure the most suita-
ble transformation of each continuous covariate was used 
in order to provide the best summary of the relation-
ship between the non-modifiable factors and mortality. 
Also, interpretation of the estimates for each factor was 
not required. Therefore, multivariable fractional polyno-
mial models were fitted on the imputed dataset, within 
a Cox proportional hazards model (using -mfpmi- Stata 
command) [20, 21]. This iterative procedure includes 
backwards selection steps to select variables that are 
predictive of mortality (threshold for variable selection 
was set as alpha = 0.2), whilst finding the most suitable 
functional form of such covariates (maximal polynomial 
degree 2 i.e. FP2 models), within a time-to-event frame-
work e.g. fitting the non-modifiable risk factor model 
using fractional polynomials resulted in systolic blood 
pressure (SBP) being transformed using the equation 
((SBP/100)^-2)-0.68.

Table 2  Modifiable risk factors

a  For statistical modelling purposes, ward specialities were grouped as medicine, surgery (minor surgery + major surgery) and critical care; ward specialities in the 
“Other” category were included in either surgery (obstetrics & gynaecology) or medicine (A&E, emergency assessment, fracture clinics and related units, imaging, 
diagnostics and telemetry, and other services not already classified as medical, surgical or HDU/ITU). b Determined from presence/absence of line/catheter on day 0 
and date of removal

Risk factor Definition Detail

Ward specialitya Medicine, Major surgery, Minor surgery, Critical 
care or Other

Observed each day, days 0–7

Staffing per 10 beds (nursing and care staff ) Average number of staff (NHS-employed 
nurses + agency nurses + healthcare assistants) 
over the 3 shifts, per 10 beds

Observed each day, days 0–7

Ward activity per 10 beds Number of patients admitted to ward + number of 
patients discharged from ward, per 10 beds

Observed each day, days 0–7

Central venous line Central line present, yes or no Determinedb each day, days 0–28

Peripheral vascular line Peripheral line present, yes or no Determinedb each day, days 0–28

Urinary catheter Urinary catheter present, yes or no Determinedb each day, days 0–28

Ward movement: to critical care Cumulative count of moves from a critical care 
ward to a medical or surgical ward

Total number of relevant ward moves up until 
that day, for days 0–7

Ward movement: from critical care Cumulative count of moves from a critical care 
ward to a medical or surgical ward

Total number of relevant ward moves up until 
that day, for days 0–7

Ward movement: within speciality Cumulative count of ward moves within the same 
speciality (surgery, medicine or critical care)

Total number of relevant ward movements up 
until that day, for days 0–7

Ward movement: from medicine to surgery Cumulative count of moves from a medical to a 
surgical ward

Total number of relevant ward movements up 
until that day, for days 0–7

Ward movement: from surgery to medicine Cumulative count of moves from a surgical to a 
medical ward

Total number of relevant ward movements up 
until that day, for days 0–7

Time to initiation of appropriate antimicrobial 
therapy

Cumulative count of days before first receipt of 
appropriate antimicrobial therapy

Total number of days before first appropriate 
therapy up until that day, for days 0–28
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The model was fitted for the cohort as a whole and the 
model estimates were used to derive a risk score for each 
patient.

Accounting for daily variation in ward variables
To account for the daily variation in ward speciality, ward 
staffing and ward activity duration of follow-up was split 
(using -stsplit- Stata command) at daily intervals from 
day 0 to 28 and variables were represented by time-
varying covariates. The “stsplit” command within Stata 
splits each observation into multiple records on the basis 
of analysis time e.g. one record per day. Ward speciality, 
presence of central line, presence of peripheral line, pres-
ence of urinary catheter, ward movements, ward staffing 
levels, ward activity, and antimicrobial therapy variable 
values were updated at each interval. For patients who 
survived and were not discharged prior to day 7, ward 
variables and ward movements for the remaining days 
(day 7 up to day 28 or death/discharge) were assumed to 
be constant for this period as the data were not collected 
post-day 7 and it was not anticipated that many patients 
would move wards after day 7. See Fig.  1 for example 
data framework for patient who died on day 12, central 
line removed on day 2 and time to receipt of appropriate 
therapy 3 days.

Dealing with variables that are bounded by survival time
Estimating the effect of time to initiation of treatment on 
survival is analytically challenging since it requires the 
person to survive until the day they receive treatment. 
This means that only those who survive to time t can wait 

until time t to start treatment and those that die shortly 
after start of follow-up have not had the opportunity to 
be exposed to a long time to initiation. This introduces 
immortal time bias, a type of time-dependent bias that 
arises when there is a period of follow-up in which the 
outcome (e.g. death) cannot occur [1, 22]. In the exam-
ple of time to initiation of treatment, a person who starts 
treatment on day 7 is considered “immortal” for the first 
7 days.

Only mortality data was collected post-discharge, so 
patients who were discharged/died during the 28-day 
follow-up had less data available than those in hospital 
for a longer duration. Ward specialty was determined at 
a single time point each day, so the maximum number of 
ward movements recorded was one per day in hospital. 
This meant that the total number of movements between 
wards was bounded by the number of days a patient 
remained alive and in hospital. Therefore, using total 
number of ward movements as a covariate in the model 
could lead to misleading or biased results as patients who 
died earlier were at “risk” of moving wards for a shorter 
period of time compared to patients who survived for 
a longer period. For example, if a patient died on day 3, 
the maximum number of ward movements they could 
have experienced was 3, compared to 7 movements for 
a patient who died on day 7. To account for this in the 
model, we planned to use time-varying covariates to rep-
resent a cumulative count of moves within the “stsplit” 
framework. For each day at risk, the ward movement 
count was increased by one if the patient moved wards 
or remained the same if the patient did not move wards. 

Fig. 1  Example data framework for patient who died on day 12, central line removed on day 2 and time to receipt of appropriate therapy 3 days. * 
Ward level variables assumed constant after day 7 as the data were not collected post-day 7
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However, due to small number of patients with more 
than one ward movement, ward movement was included 
as a binary variable (one or more vs none) in the model, 
treated as a time-varying covariate (0 until the patient 
moves wards, then updated to 1 on day of their first ward 
movement). Additionally, some ward movements could 
have been related to improving patient condition, and 
some could have related to deteriorating condition. To 
account for this, we investigated the cumulative count of 
ward movements split by type of ward movement. Types 
of ward movements considered were: movement to criti-
cal care, movement from critical care, movement within 
ward specialty, movement from medicine to surgery, and 
movement from surgery to medicine.

Similarly, time to appropriate therapy was also 
bounded by survival time. We therefore used time-
varying covariates to represent cumulative count of 
days before first receipt of appropriate antimicrobial 
therapy, instead of total number of days until receipt of 
therapy. That is, on day 0 time to receipt of appropriate 
therapy was 0 for all patients, remaining at 0 each day 
for patients who received appropriate therapy on day 
0 otherwise increasing by one for each additional day 
until receipt of first appropriate therapy. This ensured 
that for each day, the maximum number of days until 
initiation of therapy did not exceed the number of days 
under analysis for both those who died and those who 
survived.

Proportional hazards assumption
Residual checks suggested that inclusion of the time to 
receipt of appropriate antimicrobial therapy violated 
the proportional hazards assumption. Time to receipt 
of appropriate antimicrobial therapy appeared to have 
a greater impact on mortality during the first 7  days 
and the proportional hazard assumption appeared valid 
(upon examination of the plots of cumulative incidence) 
separately within each of the intervals between day 0 and 
7, day 7 and 14 and day 14 and 28. Therefore time was 
categorised into these intervals and the model fitted with 
an interaction between these time intervals and time to 
appropriate antimicrobial therapy. After fitting the model 
with this interaction, the proportional hazards assump-
tion was met.

Impact of the 36‑h rule in the definition of appropriate 
therapy
By definition, an antimicrobial treatment would not be 
considered ‘appropriate’ if the patient died within 36  h 
of starting it, since they need to have received the ther-
apy for at least 36 h for it to be defined as appropriate. 
This may lead to deaths within 36  h being viewed as a 
consequence of not receiving the therapy, when in fact 

the patient was in receipt of therapy but (due to death) 
the therapy was not administered for the 36 h required 
to be defined as appropriate. We performed a sensitiv-
ity analysis with the “36-h rule” removed to assess this 
possibility.

Study results
A summary of missing data is given in Supplementary 
Table  1, Additional file  1 and the model used to derive 
the risk score is shown in Supplementary Table 2, Addi-
tional file 1. After adjustment for organism and the risk 
score representing the non-modifiable risk factors, 
modifiable risk factors that were associated with mor-
tality within 28 days were ward speciality, ward activity, 
cumulative count of ward movements within speciality, 
cumulative count of movements from critical care, and 
time to receipt of appropriate therapy [13]. Inclusion of 
time to receipt of appropriate antimicrobial therapy vio-
lated the proportional hazards assumption, therefore 
the effect of time to receipt of appropriate antimicrobial 
therapy was estimated separately within each of three 
intervals: days 0–6, days 7–13, and day14 onwards. Dur-
ing the first week (days 0–6 inclusive), there was a highly 
significant effect for all organisms. After the first week, 
for patients who survived to day 7, the effect of time to 
receipt of first appropriate therapy on 28-day mortality 
was not statistically significant [13]. The final model can 
be seen in Supplementary Table  3 and Supplementary 
Figure  1, Additional file  1 and further details published 
in the results manuscript [13]. The complete case analysis 
gave similar results regarding the interest parameters and 
is shown in Supplementary Figure  2, Additional file  1. 
In the sensitivity analysis with the “36-h rule” removed, 
the effect of organism was more strongly associated with 
mortality, and the effect of time to appropriate antimi-
crobial therapy within the first week (days 0–6) was less 
strongly associated with mortality compared to the pri-
mary analysis (Supplementary Figure 3, Additional file 1). 
This sensitivity analysis was also performed with a “12-h 
rule” and “24-h rule” which showed similar effects to 
when using the 36-h rule (Supplementary Figures 4 and 
5, Additional file 1).

Discussion
This paper highlights the complexity of addressing sev-
eral analytical issues simultaneously; multiple imputa-
tion; multivariable fractional polynomials; time-varying 
covariates; and immortal time bias. In particular, it pre-
sents a method which is easily implemented within a Cox 
proportional hazard model to deal with data where the 
exposure is bounded by survival time.

Multiple imputation using chained equations was used 
to impute missing data. A large number of data items 
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were collected in the study which enabled us to include 
variables that were predictive of missing data in a covari-
ate of interest in the multiple imputation procedure. 
We therefore deem the missing at random assumption 
plausible. Conditional imputation can be used to impute 
longitudinal data, e.g. ward variables for each day were 
imputed conditional on patients being alive and in hos-
pital on that day, using data from other ward variables 
on the other days. An alternative approach to imputing 
longitudinal data is two-fold imputation [23]. However, 
this requires numerous iterations in each time period 
which makes it computationally intensive. It has also 
been shown that the two-fold method produces slightly 
more biased and less precise estimates than the standard 
approach [24, 25].

Within the imputation procedure, we had planned 
to allow for any interaction terms that were included 
the main analysis model by running the imputation 
procedure separately for each organism or ward spe-
cialty (depending on the variable(s) was involved in 
the interaction). Unfortunately, computational prob-
lems prevented this. Models including the six cat-
egories of organism type did not converge, while the 
time-varying nature of ward speciality made it diffi-
cult to choose a time point at which to split the data-
set in order to perform the imputation on a “one row 
per patient” model; data was also missing in ward spe-
ciality itself.

To account for risk factors which can vary across the 
study period, follow-up can be split at intervals with 
risk factors being updated at each interval and included 
in the model as time-varying covariates. Where risk 
factors are bounded by the outcome, a cumulative 
count can be used within the “stsplit” framework to 
help overcome this. This ensures that, for each day 
of risk, the maximum number of days exposed/unex-
posed does not exceed the time at risk. This enabled us 
to reduce the risk of immortal time bias, and can also 
be used when estimating the effect of duration of treat-
ment on survival. A common approach to estimate the 
effect of a variable with non-proportional hazards is to 
allow time-varying effects by including an interaction 
between the variable of interest and some function of 
time. In this study time to appropriate therapy violated 
the proportional hazards assumption, however the 
proportional hazards assumption was met for short 
time periods and the time-varying effect could be ade-
quately captured with time split into the 3 categories 
(0–6  days, 7–14  days and > 14  days). However, cau-
tion needs to be taken when interpreting time varying 
period specific hazard ratios due the potential ‘built 
in’ selection bias [26] i.e. the calculation of the haz-
ard ratio for period t1 to t2 is restricted to people who 

survive to time t1 and they may be a select cohort of 
the population at time 0. For example, in a randomised 
controlled trial, a subset of the population may have 
an unmeasured confounder, X, which at baseline 
should be balanced by the treatment allocation. How-
ever, when calculating time specific hazard ratios e.g. 
for the time period t2-t3, the analysis is restricted to 
patients who survive beyond time t2. This confounder 
(X) may be unbalanced at that time with respect to the 
treatment allocation if survival is affected by both the 
unmeasured confounder (X) and treatment allocation 
[27, 28]. This could bias the results. Effect estimates 
should therefore be interpreted as associations and not 
causal effects.

There was concern about the possibility of reverse 
causation in the conclusions of appropriate therapy, 
as it was predefined as treatment for at least 36 h with 
an antimicrobial to which the organism was suscepti-
ble. This meant that deaths within 36 h of a first dose of 
suitable antimicrobial could be associated with a lack of 
appropriate therapy and therefore strengthen the appar-
ent effect of receiving appropriate therapy on survival. 
We therefore repeated the analysis of 28-day mortality 
with 24-h, 12-h and 0-h rules in place of the 36-h rule. 
Compared to the 36-h rule, the apparent impact of time 
to appropriate therapy was reduced slightly with the 
24-h rule and slightly more so with the 12-h rule. These 
results are consistent with reverse causation inflating the 
estimated effect, and shorter defined minimum periods 
reduced the extent of this. The 0-h rule, however, gave 
quite different estimates with the estimated impact 
of time to appropriate therapy being greatly reduced, 
though we deemed this not to be a true reflection of 
appropriate therapy. Patients who die very soon after 
starting therapy are likely to have not received the treat-
ment long enough for it to take effect and therefore it 
is unsurprising that the effect of time to receipt of truly 
appropriate therapy is highly diluted.

Applying these methods enabled us to determine that 
ward speciality, ward activity, ward movement within 
speciality, movements from critical care, and time to 
receipt of appropriate antimicrobial were all risk factors 
associated with mortality within 28 days. Using cumula-
tive counts within a one row per day framework in a sur-
vival analysis can reduce the risk of bias. The approach 
that we followed uses already established methodology, 
so it is easily implemented in standard statistical pack-
ages, including Stata.
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