113 research outputs found

    Mutation-Periodic Quivers, Integrable Maps and Associated Poisson Algebras

    Get PDF
    We consider a class of map, recently derived in the context of cluster mutation. In this paper we start with a brief review of the quiver context, but then move onto a discussion of a related Poisson bracket, along with the Poisson algebra of a special family of functions associated with these maps. A bi-Hamiltonian structure is derived and used to construct a sequence of Poisson commuting functions and hence show complete integrability. Canonical coordinates are derived, with the map now being a canonical transformation with a sequence of commuting invariant functions. Compatibility of a pair of these functions gives rise to Liouville's equation and the map plays the role of a B\"acklund transformation.Comment: 17 pages, 7 figures. Corrected typos and updated reference detail

    A Nonliearly Dispersive Fifth Order Integrable Equation and its Hierarchy

    Full text link
    In this paper, we study the properties of a nonlinearly dispersive integrable system of fifth order and its associated hierarchy. We describe a Lax representation for such a system which leads to two infinite series of conserved charges and two hierarchies of equations that share the same conserved charges. We construct two compatible Hamiltonian structures as well as their Casimir functionals. One of the structures has a single Casimir functional while the other has two. This allows us to extend the flows into negative order and clarifies the meaning of two different hierarchies of positive flows. We study the behavior of these systems under a hodograph transformation and show that they are related to the Kaup-Kupershmidt and the Sawada-Kotera equations under appropriate Miura transformations. We also discuss briefly some properties associated with the generalization of second, third and fourth order Lax operators.Comment: 11 pages, LaTex, version to be published in Journal of Nonlinear Mathematical Physics, has expanded discussio

    The generalized Kupershmidt deformation for constructing new integrable systems from integrable bi-Hamiltonian systems

    Full text link
    Based on the Kupershmidt deformation for any integrable bi-Hamiltonian systems presented in [4], we propose the generalized Kupershmidt deformation to construct new systems from integrable bi-Hamiltonian systems, which provides a nonholonomic perturbation of the bi-Hamiltonian systems. The generalized Kupershmidt deformation is conjectured to preserve integrability. The conjecture is verified in a few representative cases: KdV equation, Boussinesq equation, Jaulent-Miodek equation and Camassa-Holm equation. For these specific cases, we present a general procedure to convert the generalized Kupershmidt deformation into the integrable Rosochatius deformation of soliton equation with self-consistent sources, then to transform it into a tt-type bi-Hamiltonian system. By using this generalized Kupershmidt deformation some new integrable systems are derived. In fact, this generalized Kupershmidt deformation also provides a new method to construct the integrable Rosochatius deformation of soliton equation with self-consistent sources.Comment: 21 pages, to appear in Journal of Mathematical Physic

    Integrated Lax Formalism for PCM

    Full text link
    By solving the first-order algebraic field equations which arise in the dual formulation of the D=2 principal chiral model (PCM) we construct an integrated Lax formalism built explicitly on the dual fields of the model rather than the currents. The Lagrangian of the dual scalar field theory is also constructed. Furthermore we present the first-order PDE system for an exponential parametrization of the solutions and discuss the Frobenious integrability of this system.Comment: 24 page

    Solitons from Dressing in an Algebraic Approach to the Constrained KP Hierarchy

    Full text link
    The algebraic matrix hierarchy approach based on affine Lie sl(n)sl (n) algebras leads to a variety of 1+1 soliton equations. By varying the rank of the underlying sl(n)sl (n) algebra as well as its gradation in the affine setting, one encompasses the set of the soliton equations of the constrained KP hierarchy. The soliton solutions are then obtained as elements of the orbits of the dressing transformations constructed in terms of representations of the vertex operators of the affine sl(n)sl (n) algebras realized in the unconventional gradations. Such soliton solutions exhibit non-trivial dependence on the KdV (odd) time flows and KP (odd and even) time flows which distinguishes them from the conventional structure of the Darboux-B\"{a}cklund Wronskian solutions of the constrained KP hierarchy.Comment: LaTeX, 13pg

    Darboux transformation for the modified Veselov-Novikov equation

    Full text link
    A Darboux transformation is constructed for the modified Veselov-Novikov equation.Comment: Latex file,8 pages, 0 figure

    Chaos around a H\'enon-Heiles-inspired exact perturbation of a black hole

    Full text link
    A solution of the Einstein's equations that represents the superposition of a Schwarszchild black hole with both quadrupolar and octopolar terms describing a halo is exhibited. We show that this solution, in the Newtonian limit, is an analog to the well known H\'enon-Heiles potential. The integrability of orbits of test particles moving around a black hole representing the galactic center is studied and bounded zones of chaotic behavior are found.Comment: 7 pages Revte

    On the Caudrey-Beals-Coifman System and the Gauge Group Action

    Get PDF
    The generalized Zakharov-Shabat systems with complex-valued Cartan elements and the systems studied by Caudrey, Beals and Coifman (CBC systems) and their gauge equivalent are studies. This includes: the properties of fundamental analytical solutions (FAS) for the gauge-equivalent to CBC systems and the minimal set of scattering data; the description of the class of nonlinear evolutionary equations solvable by the inverse scattering method and the recursion operator, related to such systems; the hierarchies of Hamiltonian structures.Comment: 12 pages, no figures, contribution to the NEEDS 2007 proceedings (Submitted to J. Nonlin. Math. Phys.

    A Riemann-Hilbert Problem for an Energy Dependent Schr\"odinger Operator

    Full text link
    \We consider an inverse scattering problem for Schr\"odinger operators with energy dependent potentials. The inverse problem is formulated as a Riemann-Hilbert problem on a Riemann surface. A vanishing lemma is proved for two distinct symmetry classes. As an application we prove global existence theorems for the two distinct systems of partial differential equations ut+(u2/2+w)x=0,wt±uxxx+(uw)x=0u_t+(u^2/2+w)_x=0, w_t\pm u_{xxx}+(uw)_x=0 for suitably restricted, complementary classes of initial data

    Completeness of the cubic and quartic H\'enon-Heiles Hamiltonians

    Full text link
    The quartic H\'enon-Heiles Hamiltonian H=(P12+P22)/2+(Ω1Q12+Ω2Q22)/2+CQ14+BQ12Q22+AQ24+(1/2)(α/Q12+β/Q22)−γQ1H = (P_1^2+P_2^2)/2+(\Omega_1 Q_1^2+\Omega_2 Q_2^2)/2 +C Q_1^4+ B Q_1^2 Q_2^2 + A Q_2^4 +(1/2)(\alpha/Q_1^2+\beta/Q_2^2) - \gamma Q_1 passes the Painlev\'e test for only four sets of values of the constants. Only one of these, identical to the traveling wave reduction of the Manakov system, has been explicitly integrated (Wojciechowski, 1985), while the three others are not yet integrated in the generic case (α,β,γ)≠(0,0,0)(\alpha,\beta,\gamma)\not=(0,0,0). We integrate them by building a birational transformation to two fourth order first degree equations in the classification (Cosgrove, 2000) of such polynomial equations which possess the Painlev\'e property. This transformation involves the stationary reduction of various partial differential equations (PDEs). The result is the same as for the three cubic H\'enon-Heiles Hamiltonians, namely, in all four quartic cases, a general solution which is meromorphic and hyperelliptic with genus two. As a consequence, no additional autonomous term can be added to either the cubic or the quartic Hamiltonians without destroying the Painlev\'e integrability (completeness property).Comment: 10 pages, To appear, Theor.Math.Phys. Gallipoli, 34 June--3 July 200
    • …
    corecore