235 research outputs found
Enhacement in the dymanic response of a viscoelastic fluid flowing through a longitudinally vibrating tube
We analyzed effects of elasticity on the dynamics of fluids in porous media
by studying a flow of a Maxwell fluid in a tube, which oscillates
longitudinally and is subject to oscillatory pressure gradient. The present
study investigates novelties brought about into the classic Biot's theory of
propagation of elastic waves in a fluid-saturated porous solid by inclusion of
non-Newtonian effects that are important, for example, for hydrocarbons. Using
the time Fourier transform and transforming the problem into the frequency
domain, we calculated: (A) the dynamic permeability and (B) the function
that measures the deviation from Poiseuille flow friction as a
function of frequency parameter . This provides a more complete theory
of flow of Maxwell fluid through the longitudinally oscillating cylindrical
tube with the oscillating pressure gradient, which has important practical
applications. This study has clearly shown transition from dissipative to
elastic regime in which sharp enhancements (resonances) of the flow are found
Implementation of 14 bits floating point numbers of calculating units for neural network hardware development
An important aspect of modern automation is machine learning. Specifically, neural networks are used for environment analysis and decision making based on available data. This article covers the most frequently performed operations on floating-point numbers in artificial neural networks. Also, a selection of the optimum value of the bit to 14-bit floating-point numbers for implementation on FPGAs was submitted based on the modern architecture of integrated circuits. The description of the floating-point multiplication (multiplier) algorithm was presented. In addition, features of the addition (adder) and subtraction (subtractor) operations were described in the article. Furthermore, operations for such variety of neural networks as a convolution network - mathematical comparison of a floating point ('less than' and 'greater than or equal') were presented. In conclusion, the comparison with calculating units of Atlera was made
Features of optical characteristics of atmospheric aerosol in the Middle Urals
The results of studies into the aerosol optical depth (AOD) for the atmosphere in the Middle Urals in the spectrum range of 0.34-1.02 μm for 2004-2010 is presented. The interannual, annual, seasonal, and daily variations in the AOD are analyzed. The major statistical characteristics of the AOD, the parameters of the probability density function of distributions over different wave lengths, and the parameters of Angstrom's formula for the different seasons are calculated. The monitoring stations in the Russian segment of the AERONET network are ranked with respect to the AOD value. A shift from March to May in the spring maximum of the AOD is revealed in comparison with the results of the actinometric observations for the period of 1960-1986. A qualitative assessment is given to the influence of forest and peat fires in the region on the AOD. A classification of the states of aerosol haze in the atmosphere according to the AOD values is proposed. © 2013 Pleiades Publishing, Ltd
The use of plasma-based deposition with ion implantation technology to produce superhard molybdenum-based coatings in a mixed (C₂H₂+N₂) atmosphere
The influence of the pressure of a mixed gaseous atmosphere (80%C₂H₂+20%N₂) and the supply of a high-voltage negative potential in a pulsed form on the elemental and phase composition, structure and physico-mechanical characteristics of the vacuum-arc molybdenum-based coating
Elastic waves push organic fluids from reservoir rock
Elastic waves have been observed to increase productivity of oil wells, although the reason for the vibratory mobilization of the residual organic fluids has remained unclear. Residual oil is entrapped as ganglia in pore constrictions because of resisting capillary forces. An external pressure gradient exceeding an ‘‘unplugging’’ threshold is needed to carry the ganglia through. The vibrations help overcome this resistance by adding an oscillatory inertial forcing to the external gradient; when the vibratory forcing acts along the gradient and the threshold is exceeded, instant ‘‘unplugging’’ occurs. The mobilization effect is proportional to the amplitude and inversely proportional to the frequency of vibrations. We observe this dependence in a laboratory experiment, in which residual saturation is created in a glass micromodel, and mobilization of the dyed organic ganglia is monitored using digital photography.We also directly demonstrate the release of an entrapped ganglion by vibrations in a computational fluid-dynamics simulation
Implementation of 14 bits floating point numbers of calculating units for neural network hardware development
An important aspect of modern automation is machine learning. Specifically, neural networks are used for environment analysis and decision making based on available data. This article covers the most frequently performed operations on floating-point numbers in artificial neural networks. Also, a selection of the optimum value of the bit to 14-bit floating-point numbers for implementation on FPGAs was submitted based on the modern architecture of integrated circuits. The description of the floating-point multiplication (multiplier) algorithm was presented. In addition, features of the addition (adder) and subtraction (subtractor) operations were described in the article. Furthermore, operations for such variety of neural networks as a convolution network - mathematical comparison of a floating point ('less than' and 'greater than or equal') were presented. In conclusion, the comparison with calculating units of Atlera was made
DEVELOPMENT OF A GROUP OF MOBILE ROBOTS FOR CONDUCTING COMPREHENSIVE RESEARCH OF DANGEROUS WAVE CHARACTERISTICS IN COASTAL ZONES
New methods and approaches for carrying out comprehensive measurements of hazardous waves (tsunami, storm surges) and background wave climate with telemetrically related group of ground, surface and underwater based robots are discussed. The design and equipment list of the ground robot are considered. It includes three various types of movers, an add-on for the installation of devices on the mobile platform and the hardware part. Ground robot was tested in 2016 on the coast of Sakhalin Island, cape Svobodny. Based on test results there were made conclusions on the possibility of increasing mobility of the ground robot and expanding its use. Specially designed underwater robot collects data using a video inspection system and a hydrostatic wave recorder with a string sensor. It has the ability to adjust the position of the center of gravity to increase stability when driving on steep slopes of the seabed. The surface robot was designed for conducting detailed bathymetry measurements of investigated water areas by means of a multi-beam echo sounder. Underwater and surface-based robots were tested in July 2017 on Sakhalin Island. Both robotic systems were merged into the united local network. The results of their operation were obtained to verify the data from measuring systems of the ground robot. In 2018, it is planned to conduct a series of tests involving the three robots and merging them into a local network to manage and process data in real-time
Extensive Chaos in the Nikolaevskii Model
We carry out a systematic study of a novel type of chaos at onset ("soft-mode
turbulence") based on numerical integration of the simplest one dimensional
model. The chaos is characterized by a smooth interplay of different spatial
scales, with defect generation being unimportant. The Lyapunov exponents are
calculated for several system sizes for fixed values of the control parameter
. The Lyapunov dimension and the Kolmogorov-Sinai entropy are
calculated and both shown to exhibit extensive and microextensive scaling. The
distribution functional is shown to satisfy Gaussian statistics at small
wavenumbers and small frequency.Comment: 4 pages (including 5 figures) LaTeX file. Submitted to Phys. Rev.
Let
Optical determination of flexoelectric coefficients and surface polarization in a hybrid aligned nematic cell
A. Mazzulla, F. Ciuchi, and J. Roy Sambles, Physical Review E, Vol. 64, article 021708 (2001). "Copyright © 2001 by the American Physical Society."We present an optical study of the influence of both the flexoelectric effect and surface polarization on a hybrid-aligned nematic cell using the half-leaky guided mode technique. Tilt angle profiles, obtained from fits of experimental data (reflectivity curves) taken under applied voltages, are compared with the ones derived by a complete theoretical model. Measurements with an applied alternating voltage allow the evaluation of the anchoring energy by solving the torque balance equation at the planar surface. From measurements with static fields, the sum of flexoelectric coefficients and the surface polarization are determined by numerical solution of Euler-Lagrange equations
Set optimization - a rather short introduction
Recent developments in set optimization are surveyed and extended including
various set relations as well as fundamental constructions of a convex analysis
for set- and vector-valued functions, and duality for set optimization
problems. Extensive sections with bibliographical comments summarize the state
of the art. Applications to vector optimization and financial risk measures are
discussed along with algorithmic approaches to set optimization problems
- …