484 research outputs found

    P-wave Pairing and Colossal Magnetoresistance in Manganese Oxides

    Full text link
    We point out that the existing experimental data of most manganese oxides show the {\sl frustrated} p-wave superconducting condensation in the ferromagnetic phase in the sense that the superconducting coherence is not long enough to cover the whole system. The superconducting state is similar to the A1A_{1} state in superfluid He-3. The sharp drop of resistivity, the steep jump of specific heat, and the gap opening in tunneling are well understood in terms of the p-wave pairing. In addition, colossal magnetoresistance (CMR) is naturally explained by the superconducting fluctuations with increasing magnetic fields. The finite resistivity may be due to some magnetic inhomogeneities. This study leads to the possibility of room temperature superconductivity.Comment: LaTex, 14 pages, For more information, please send me an e-mail. e-mail adrress : [email protected]

    Thermoelectric Flux in Superconducting Rings

    Get PDF
    Definitive measurements by Van Harlingen et al. in 1980 show that the flux induced by a temperature difference across the two junctions of a Pb-In ring exceeds theoretical expectation by a factor, ϳ105. The theory fails owing to ͑mis͒use of a Boltzmann transport equation to describe the thermal diffusion of quasi-particle excitations, a treatment which violates electron conservation. An electron-conserving transport theory is developed and explains the data

    Properties of short-range and long-range correlation energy density functionals from electron-electron coalescence

    Full text link
    The combination of density functional theory with other approaches to the many-electron problem through the separation of the electron-electron interaction into a short-range and a long-range contribution is a promising method, which is raising more and more interest in recent years. In this work some properties of the corresponding correlation energy functionals are derived by studying the electron-electron coalescence condition for a modified (long-range-only) interaction. A general relation for the on-top (zero electron-electron distance) pair density is derived, and its usefulness is discussed with some examples. For the special case of the uniform electron gas, a simple parameterization of the on-top pair density for a long-range only interaction is presented and supported by calculations within the ``extended Overhauser model''. The results of this work can be used to build self-interaction corrected short-range correlation energy functionals.Comment: revised version, to appear in Phys. Rev.

    System-adapted correlation energy density functionals from effective pair interactions

    Full text link
    We present and discuss some ideas concerning an ``average-pair-density functional theory'', in which the ground-state energy of a many-electron system is rewritten as a functional of the spherically and system-averaged pair density. These ideas are further clarified with simple physical examples. We then show that the proposed formalism can be combined with density functional theory to build system-adapted correlation energy functionals. A simple approximation for the unknown effective electron-electron interaction that enters in this combined approach is described, and results for the He series and for the uniform electron gas are briefly reviewed.Comment: to appear in Phil. Mag. as part of Conference proceedings for the "Electron Correlations and Materials Properties", Kos Greece, July 5-9, 200

    Broken Symmetry in Density-Functional Theory: Analysis and Cure

    Get PDF
    We present a detailed analysis of the broken-symmetry mean-field solutions using a four-electron rectangular quantum dot as a model system. Comparisons of the density-functional theory predictions with the exact ones show that the symmetry breaking results from the single-configuration wave function used in the mean-field approach. As a general cure we present a scheme that systematically incorporates several configurations into the density-functional theory and restores the symmetry. This cure is easily applicable to any density-functional approach.Comment: 4 pages, 4 figures, submitted to PR

    A chiral crystal in cold QCD matter at intermediate densities?

    Full text link
    The analogue of Overhauser (particle-hole) pairing in electronic systems (spin-density waves with non-zero total momentum QQ) is analyzed in finite-density QCD for 3 colors and 2 flavors, and compared to the color-superconducting BCS ground state (particle-particle pairing, QQ=0). The calculations are based on effective nonperturbative four-fermion interactions acting in both the scalar diquark as well as the scalar-isoscalar quark-hole ('σ\sigma') channel. Within the Nambu-Gorkov formalism we set up the coupled channel problem including multiple chiral density wave formation, and evaluate the resulting gaps and free energies. Employing medium-modified instanton-induced 't Hooft interactions, as applicable around μq0.4\mu_q\simeq 0.4 GeV (or 4 times nuclear saturation density), we find the 'chiral crystal phase' to be competitive with the color superconductor.Comment: 14 pages ReVTeX, including 11 ps-/eps-figure

    Evidence for an antiferromagnetic component in the magnetic structure of ZrZn2

    Full text link
    Zero-field muon spin rotation experiments provide evidence for an antiferromagnetic component in the magnetic structure of the intermetallics ZrZn2.Comment: 5 pages, 2 figure

    Experimental Implementation of Logical Bell State Encoding

    Get PDF
    Liquid phase NMR is a general purpose test-bed for developing methods of coherent control relevant to quantum information processing. Here we extend these studies to the coherent control of logical qubits and in particular to the unitary gates necessary to create entanglement between logical qubits. We report an experimental implementation of a conditional logical gate between two logical qubits that are each in decoherence free subspaces that protect the quantum information from fully correlated dephasing.Comment: 9 Pages, 5 Figure

    Ground-state densities and pair correlation functions in parabolic quantum dots

    Full text link
    We present an extensive comparative study of ground-state densities and pair distribution functions for electrons confined in two-dimensional parabolic quantum dots over a broad range of coupling strength and electron number. We first use spin-density-functional theory to determine spin densities that are compared with Diffusion Monte Carlo (DMC) data. This accurate knowledge of one-body properties is then used to construct and test a local approximation for the electron-pair correlations. We find very satisfactory agreement between this local scheme and the available DMC data, and provide a detailed picture of two-body correlations in a coupling-strength regime preceding the formation of Wigner-like electron ordering.Comment: 18 pages, 12 figures, submitte
    corecore