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Thermoelectric flux in superconducting rings

D. C. Marinescu and A. W. Overhauser
Department of Physics, Purdue University, West Lafayette, Indiana 47907

~Received 7 August 1996!

Definitive measurements by Van Harlingenet al. in 1980 show that the flux induced by a temperature
difference across the two junctions of a Pb-In ring exceeds theoretical expectation by a factor,;105. The
theory fails owing to~mis!use of a Boltzmann transport equation to describe the thermal diffusion of quasi-
particle excitations, a treatment which violates electron conservation. An electron-conserving transport theory
is developed and explains the data.@S0163-1829~97!15717-4#

I. INTRODUCTION

It has been known for sixty years that thermoelectric
effects—Seebeck, Peltier, and Thomson—are absent in
superconductors.1,2 Nevertheless it was noticed that the
‘‘normal electrons’’ of a two-fluid model could be driven out
of equilibrium by a temperature gradient, and so cause an
observable phenomenon.3 During 1974 Garland and Van
Harlingen4 and, independently, Gal’perinet al.5 proposed
that imposing a temperature difference across the junctions
of a superconducting, bimetallic ring should create an un-
quantized magnetic flux through the ring. The anticipated
size of the effect is near the sensitivity limit of SQUID tech-
nology.

The origin of a thermoelectric flux can be easily under-
stood by considering a Pb-In ring as shown in Fig. 1. The
critical temperature,Tc57.2 K, of Pb is sufficiently high that
one can neglect any quasiparticle excitations~in the Pb!
when the ring is kept slightly below theTc of In, 3.4 K.
However, an imposed temperature gradient in the In will
generate a bulk thermal diffusion~electric! current density,

jWd5as¹T. ~1!

Calculation of the transport coefficient,as , is the focus of
the present study. Now the Meissner effect in the interior of
In requires that the total current density be zero. Accordingly
there must be a compensating supercurrent,jWs , so that

jWs1 jWd50. ~2!

Naturally, this equation does not apply within a London pen-
etration depth of the surface, where the current generating
the thermoelectric flux is found. In the London two-fluid
model the supercurrent is6

jWs52
nse

2

mc
AW , ~3!

wherens is the density of the superconducting electrons. On
combining Eqs.~1!–~3! the vector potential along an interior
path ~where there is no magnetic field or current! is

AW 5
mcas

nse
2 ¹T. ~4!

The thermoelectric fluxF is of course the line integral of
AW . However, sinceas in Pb is negligible,

F~T!5
mc

e2 ET0
Tas

ns
dT8, ~5!

the path having been taken counterclockwise fromT0 to T
through the In side of Fig. 1.

Numerical evaluation of Eq.~5! will be given below. The
conventional theory predicts that the flux,F, expected from
a DT;10 mK nearTc is ;1023F0, whereF05hc/2e, the
flux quantum. Such a small value indicates that isolation of
the superconducting ring from stray fields is of paramount
importance.7

Van Harlingen and Garland8 achieved the required sensi-
tivity and isolation by adopting the toroidal geometry shown
in Fig. 2. The axis of symmetry coincides with the axis of a
Pb cylinder, which is capped at the ends by In plates and
surrounded by a 0.25 mm thick In cylinder, 7 mm in diam-
eter and 4 cm long. The thermoelectric flux ‘‘circulates’’
through the annular cavity between the Pb and In cylinders.
A Nb coil of six to ten turns was threaded through the hole
along the axis of the Pb post and wrapped tightly~at equally
spaced azimuthal angles! around the exterior of the In cylin-

FIG. 1. A small temperature difference applied to the junctions
of a Pb-In ring, kept belowTc of In, drives the In quasiparticles out
of equilibrium. On account of the Meissner effect, the bulk current

density must be zero, so a supercurrent~proportional toAW ) cancels
the diffusion current. An unquantized flux through the ring~equal to

the line integral ofAW ) is generated by a current in the London
penetration depth of the ring’s inner surface.
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der. The coil was then coupled to a SQUID galvanometer.
The toroidal design proved to be free from temperature de-
pendent stray fields, even when 104 flux quanta were delib-
erately frozen in the primary circuit of the flux transformer.

Typical data forF(T) are shown in Fig. 3.T0 was fixed
atTc27 mK, andT was raised in 50mK steps toTc21 mK.
The observed thermoelectric flux of;200 quanta exceeded
theoretical predictions by more than 105. Data from seven
toroidal samples were published by Van Harlingenet al.9 It
is convenient to displaydF/dT by a log-log plot, as in Fig.
4. The theoretical curve based on conventional treatments5,10

is also shown. The discrepancy between theory and experi-
ment is a factor ranging from 105 to 106.

The foregoing serious shortcoming of elementary trans-
port theory in the superconducting state has defied explana-

tion for eighteen years. To forestall any concern regarding
the In cylinders, which were of five 9s purity and typically
had residual resistivity ratios of;104, Van Harlingenet al.
studied an eighth toroidal specimen having an In post~in-
stead of a Pb post!.8,9 The thermoelectric flux was then zero,
the expected behavior for an all In circuit devoid of inhomo-
geneities.

II. REVIEW OF THE CONVENTIONAL THEORY

It is necessary to recapitulate some statistical aspects of
the Bardeen-Cooper-Schrieffer~BCS! theory.11 Any equilib-
rium, or nonequilibrium ensemble is a collection of BCS
Fock-space wave functions:

C5) 5
~vk2ukckW↑

†
c

2kW↓
†

!

c
2kW↓
†

ckW↑
†

~uk1vkckW↑
†
c

2kW↓
†

!
6 Cvacuum. ~6!

We refer to the set of four choices for a givenkW as a ‘‘quar-
tet.’’ Each of the four operators is chosen with a statistical
probability: f 1k , f 2k , f 3k , or f 4k ~from bottom to top!. Of
course,

f 1k1 f 2k1 f 3k1 f 4k51. ~7!

uk(T) andvk(T) depend on temperature, and are given by

uk
25

1

2 S 11
ek
Ek

D , ~8!

FIG. 2. The Pb-In ‘‘rings’’ employed by Van Harlingenet al.
have toroidal geometry. The thermoelectric flux circulates through
the annular space between the Pb rod and the In cylinder, and arises
from currents in the London penetration depth on the outer surface
of the Pb rod and the inner surface of the In cylinder.

FIG. 3. Thermoelectric flux~in flux quanta units! measured by
Van Harlingenet al. in a toroidal Pb-In sample below theTc of In.
The temperature of one junction was fixed atTc27 mK. The tem-
perature of the other junction was increased in 50mK steps toward
Tc .

FIG. 4. Thermoelectric flux,dF/dT, measured by Van Harlin-
genet al. on seven Pb-In toroidal samples. The theoretical predic-
tion of Gal’perinet al., based on solution of a quasiparticle trans-
port equation~due to Bardeenet al.! is also shown.
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vk
25

1

2 S 12
ek
Ek

D
whereek5(\2k2/2m)2eF is the one-electron energy mea-
sured with respect to the Fermi level,eF , and

Ek5@D~T!21ek
2#1/2. ~9!

In equilibrium the probabilities,f jk , are given by

f 1k5~12 f k!
2,

f 2k5 f 3k5 f k~12 f k!, ~10!

f 4k5 f k
2 ,

where

f k5~ebEk11!21, ~11!

and b51/kBT. f k is the equilibrium probability that a
Bogoliubov-Valatin ~BV! excitation for spin-up~or spin-
down! occurs,12,13 i.e., the quartet is excited from level 1 to 2
~or 3!. f k

2 is the equilibrium probability that both BV excita-
tions occur. We will denote non-equilibrium BV excitation
probabilities byf̃ k . ~In general we would need a spin index;
but for the problem at handf̃ k for spin up and down are the
same.!

The theory of BV quasiparticle transport was developed
by Bardeen, Rickayzen, and Tewordt~BRT! and applied to
the thermal conductivity of a superconductor.14 BRT found
the expected result for the group velocity of a BV excitation:

rẆ5
1

\
¹kEk5

ek
Ek

\kW

m
. ~12!

It should be noticed thatrẆk changes sign whenek becomes
negative. WhenD varies with position as, for example, in the
case of a temperature gradient, a BV quasiparticle will expe-

rience an acceleration.kẆ can be obtained from the condition
dEk /dt50. Accordingly, withD5D@T(rW)#,

dEk
dt

5~¹ rWEk!•rẆ1~¹kWEk!•kẆ50. ~13!

On using Eq.~12!, one can solve forkẆ :

\kẆ52¹ rWEk . ~14!

Since the dominant scattering mechanism~caused by impu-
rities! is elastic, the collision term of the Boltzmann equation
will be

S ] f̃ k
]t D

coll.

52
f̃ k2 f k

ts
, ~15!

wherets is the relaxation time in the superconducting state.
The solution of the transport equation is then

f̃ k5 f k2ts~rẆ•¹ rW f k1kẆ•¹kW f k!. ~16!

Observe that the equilibrium distribution,f k , appears in the

rẆ andkẆ terms because both terms are already proportional to
¹T ~which is sufficient for linear response!.

One can easily verify that a cancellation occurs for two of
the terms which arise in Eq.~16!. The¹ rW f k yields a¹T term
from the explicit dependence onT(rW) in Eq. ~11!, since
b51/kBT. However, a second¹T terms arises from the im-
plicit dependence ofE onT throughD(T). This latter term is

cancelled by thekẆ term of Eq.~16! when Eq.~12! is utilized.
The steady-state solution for the quasiparticle distribution
function is therefore

f̃ k5 f k2tsS b\ek
mT D f k~12 f k!kW•¹T. ~17!

Equation~12! has been used to eliminaterẆ; and the factor
f k(12 f k), arises from the derivative of Eq.~11!. The relax-
ation timets is related to the relaxation timetn for impurity
scattering in the normal state. For quasiparticle transitions
from kW to kW8,

1

ts
5U Ek

ek
U~ukuk82vkvk8!

2
1

tn
. ~18!

The absolute-value factor is the ratio of the BCS to normal
density of states. The term involving theu’s andv ’s, from
Eq. ~8!, is the BCS coherence factor for transitions which do
not flip an electron spin.11 For elastic scatteringuk5uk8 and
vk5vk8, so from Eq.~8! the coherence factor is (ek /Ek)

2.
The steady-state distribution, Eq.~17!, can now be written in
a final form which depends on the normal-state relaxation
time, tn ,

f̃ k5 f k2
\tnEkek
mkBT

2ueku
f k~12 f k!kW•¹T. ~19!

This solution was used by BRT to evaluate the energy flux in
order to find the thermal conductivity in the superconducting
state.14 Here we employ Eq.~19! to calculate the electric
current and, thereby, deduce the thermal diffusion current,
jWd , obtained by Gal’perinet al.

5,10 ~which leads to the small
dF/dT shown in Fig. 4!.

The current is merely the sum of Eq.~19! multiplied by,
22e\kW /m; the factor of 2 arises from the two spin states.

jWd52
2e\

m (
kW

~ f̃ k2 f k!kW . ~20!

The sum can be converted to an integral; and we adopt the
traditional approximation that the density of states,N(0) per
spin, is constant in the interval@2\vD ,\vD#. Accordingly,

jWd5
4 etnN~0!

3mkBT
2 ¹TE

2\vD

\vD
~e1eF! f ~12 f !

Ee

ueu
de. ~21!

We have omitted thekW subscripts sincee, E, and f depend
only on the magnitude ofkW . jWd is parallel to¹T; so the
factor, 1/3, arises from the average of cos2u over solid angle
~whereu is the angle betweenkW and¹T). \2k2/2m has been
replaced by (e1eF); and f is given by Eq.~11!. The factor
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in the integrand to the right of (e1eF) is odd, so theeF term
contributes nil. The integral can now be converted frome to
E on using~for e>0):

de5
de

dE
dE5

E

ueu
dE. ~22!

On account of the symmetry of the integral,

jWd5
8etnN~0!

3mkBT
2 ¹TE

D

\vD
E2f ~12 f !dE. ~23!

Since f (12 f ) is negligible beyond the upper limit, one can
replace\vD by `. Furthermore,

N~0!5
3n

4eF
, ~24!

wheren is the electron density. Withx5bE, it follows that
the transport coefficientas of Eq. ~1! is

as5
nep2kB

2Ttn
3meF

G~D!, ~25!

where

G~D!5
3

2p2E
bD

` F x

cosh~ 1
2 x!

G2dx. ~26!

NearTc , bD!1; soG.12@(bD)3/2p2#'1. For electron
conduction, the thermal diffusion current is parallel to¹T
and positive.

III. SUPERCURRENT AND THE
THERMOELECTRIC FLUX

The induced thermoelectric flux,F ~or its derivative
dF/dT), depends on bothas andns according to Eqs.~3!–
~5!. The densityns of superconducting electrons can be de-
fined by BCS theory. The Ginzburg-Landau diamagnetic
current is15

jWs52
2e2

mc
uCu2AW , ~27!

which has the form of Eq.~3!, so ns52uCu2. C is the
Ginzburg-Landau order parameter and is proportional to the
BCS gap parameter,D, providedT is nearTc :

15

C~T!5F 7z~3!n

8~pkBTc!
2G1/2D~T!. ~28!

z is the Riemann zeta function;z(3)51.202. The tempera-
ture dependence ofD(T) close toTc is

15

D~T!5pkBTcF 8

7z~3! S 12
T

Tc
D G1/2. ~29!

From Eqs.~28! and ~29! it follows that

ns52nS 12
T

Tc
D . ~30!

All of the parameters needed for the fluxF, Eq. ~5!, are
now at hand. From Eqs.~25! and ~30!, and on taking
G51,

dF

dT
5

pkB
2Tctn

6\eF@12~T/Tc!#
F0 ~31!

(F0 is the flux quantum.! The room temperature resistivity
of In is 8.75mV cm, so the low temperature relaxation time,
on assuming a residual resistivity ratio;83103, is

tn;2.8310211 s. ~32!

Accordingly, with eF58.6 eV andTc53.4 K, the flux de-
rivative ~whenT is just belowTc) is

dF

dT
56.531025@12~T/Tc!#

21F0K
21. ~33!

This theoretical prediction, equivalent to that of Gal’perin
et al.5,10 is shown in Fig. 4. Not only is the magnitude of Eq.
~33! smaller than the data by 5 to 6 orders of magnitude, but
the temperature dependence,@12(T/Tc)#

21, differs from
that observed, which approximates a power law,;21.5.

We are forced to conclude that the BRT transport theory
is fundamentally incorrect. It is surprising that an error so
flagrant could survive uncorrected for many years. The mis-
take must be a very deep one. What is perhaps most perplex-
ing is that the unique solution, Eq.~19!, of the quasiparticle
transport equation can imply a reasonable energy flux and at
the same time yield so faulty a diffusion current. Apparently
a compensating error occurs in BRT’s thermal conductivity
study.

IV. ELECTRON-CONSERVING TRANSPORT THEORY

There is no novelty in emphasizing that transport equa-
tions must respect the conservation laws. Ordinarily such
concerns arise in a treatment of collision terms by the
relaxation-time approximation. Particles must be conserved
locally whether they be neutral or ionized atoms,16

electrons,17 or spin-polarized3He.18 This difficulty does not
appear in the present problem since BV quasiparticles which
scatter elastically do indeed leave the local electron density
unchanged.

Nevertheless, there is a very serious problem with BV
quasiparticles. For example, the BV creation operator which
takes the quartet,kW , from level 1 to level 2 in Eq.~6! is

hkW↑
†

5ukckW↑
†

2vkc2kW↓ . ~34!

Excitation of such a quasiparticle involves both electron cre-
ation and annihilation. The relative amplitudes depend on
position ~when there is a temperature gradient! since, from
Eqs.~8! and~9!, these amplitudes depend onD@T(rW)#. Con-
sequently, when a BV wave packet travels with the velocity
given by Eq.~12!, the total number of electrons associated
with the Fock-space wave function, Eq.~6!, changes continu-
ously. Similarly, the amplitudes in Eq.~34! depend onkW

sinceEk , Eq. ~9!, depends one(kW ). Accordingly, electron
conservation is also violated when a BV wave packet expe-
riences the acceleration given in Eq.~14!.

11 640 55D. C. MARINESCU AND A. W. OVERHAUSER



The flow terms of the Boltzmann equation are based on
strict conservation of invariable objects. In a superconductor
only electrons qualify as appropriate particles for a transport
equation. The fact that BCS theory employs a grand canoni-
cal ensemble is not relevant to this particular issue. Each
~many-electron! system of the ensemble obeys strict local
conservation of electrons. An ensemble average of systems,
each of which obeys local electron conservation, will also
exhibit local conservation. There is no infinite set of ‘‘um-
bilical cords’’ which connect an electron reservoir to every
volume element,d3rd4k, in phase space in order to enforce
conservation rules. Once a grand ensemble is established, all
umbilical cords are severed, and each system of the ensemble
evolves ‘‘on its own.’’

The foregoing mandate requires the introduction of new
distributions,g̃k↑ andg̃2k↓ , to describe electrons excited out
of level 1 of each quartet. From Eq.~6!,

g̃k↑5~ f̃ k1vk
21 f̃ 2k1 f̃ 4kuk

2!2vk
2 , ~35!

and similarly,

g̃2k↓5~ f̃ k1vk
21 f̃ 3k1 f̃ 4kuk

2!2vk
2 , ~36!

since the number of, say,kW↑ electrons excited is thekW↑ total
in the quartet minus the number there would be iff k151 and
f k25 f k35 f k450. $uk

2% and $vk
2% in Eqs. ~35! and ~36! are

the equilibrium values given by Eqs.~8! and~9! at the local
temperature, i.e., forD5D@T(rW)#. Now, it is of particular
interest to examine the equilibrium values,gk↑ andg2k↓ , of
Eqs.~35! and~36!. One merely replacesf̃ jk by f jk from Eq.
~10! to find that

gk↑5g2k↓5 f k~122vk
2!. ~37!

Then, from Eq.~8!, the equilibriumg’s are

gk↑5g2k↓5
ek
Ek

f k . ~38!

f k is of course just the equilibrium probability of a BV ex-
citation, Eq.~11!. These equilibriumg’s will be used in the
flow terms of the~new! transport equation for the same rea-
son invoked in writing Eq.~16!—the flow terms are auto-
matically linear in¹T. The correct~steady state! Boltzmann
equation for spin-up electrons is, therefore,

S dg̃k↑dt D5S ]g̃k↑
]t D

coll.

2rẆ•¹ rWgk↑2kẆ•¹kWgk↑50. ~39!

The main issue remaining is the collision term forg̃k↑ .
We will show that

S ]g̃k↑
]t D

coll.

52
g̃k↑2gk↑

ts
, ~40!

wherets is the relaxation time, Eq.~18!, derived by BRT for
the quasiparticle distribution,f̃ k↑ . It is true, as already
pointed out, that elastic scattering~by impurities! of BV qua-
siparticles conserves electrons, but that alone is not sufficient
since the relations, Eqs.~35! and ~36!, between theg̃’s and

f̃ ’s are complicated. It is necessary to employ in Eqs.~35!
and ~36! the nonequilibrium analogs of Eq.~10!:

f̃ k45 f̃ k↑ f̃2k↓ ,

f̃ k35~12 f̃ k↑! f̃2k↓ ,

f̃ k25 f̃ k↑~12 f̃2k↓!,

f̃ k15~12 f̃ k↑!~12 f̃2k↓!. ~41!

One finds readily

g̃k↑5uk
2 f̃ k↑2vk

2 f̃2k↓ ,

g̃2k↓5uk
2 f̃2k↓2vk

2 f̃ k↑ . ~42!

The inverted relations are the ones needed:

f̃ k↑5
uk
2g̃k↑1vk

2g̃2k↓

uk
22vk

2 ,

~43!

f̃2k↓5
vk
2g̃k↑1uk

2g̃2k↓

uk
22vk

2 .

The important observation is that the flow terms of Eq.~39!
create deviations from equilibrium which are odd inkW , that
is,

dg̃k↑52dg̃2k↓ . ~44!

This relation follows from the fact thatrẆ, Eq. ~12!, is odd in
kW and also that¹kW in Eq. ~39! is operating on a function, Eq.
~38!, which is even inkW . Therefore, when small variations of
Eq. ~43! are considered, and Eq.~44! is employed,

d f̃ k↑5dg̃k↑ , d f̃2k↓5dg̃2k↓ . ~45!

It follows immediately that the collision terms, Eqs.~15! and
~40!, have the same relaxation time,ts , i.e., Eq. ~18!. It
should be appreciated that Eqs.~44! and~45! do not hold in
general, but apply only to deviations~from equilibrium! that
arise from a temperature gradient. This caveat is similar to
one noted first by Peierls:19 A relaxation time approximation
can be used for impurity scattering in~the normal state of!
metals only when the nonequilibrium distortion of the distri-
bution involves spherical harmonics having but one value of
l , typically l51. ~Ultrasonic attenuation requires a different
relaxation time,t2, i.e., for l52.!

The solution of the electron-conserving transport equation
can now be written. Eqs.~38!–~40! provide, after dropping
the spin index~since no spin dependence arises!,

g̃k5gk2tsF rẆ•¹ rWS ek
Ek

f kD1kẆ•¹kWS ek
Ek

f kD G . ~46!

The flow terms differ from Eq.~16! only by the extra factor
of ek /Ek . After carrying out the differentiations, one obtains
a revised version of Eq.~17!:

g̃k5gk2
\ts
m F bek

2

TEk
f k~12 f k!2

f kD

Ek
2 S dD

dTD GkW•¹T. ~47!
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The second term in brackets appears because thekẆ term
of Eq. ~46! is no longer completely cancelled by one of the

rẆ terms. The thermal diffusion currentjWd and, therefore, the
transport coefficientas is found by following the analysis
between Eqs.~20! and ~22!,

as5
4eN~0!

3mkBT
2E

2\vD

\vD
ts~e1eF!

3F f ~12 f !
e2

E
2
kBT

2fD

E2 S dD

dTD Gde. ~48!

We have not yet convertedts to tn , using Eq.~18!, because
an expanded discussion ofts , given below, is required.

At this point it is possible to appreciate why the newas
will be orders of magnitude larger than the former value.
Recall that the integrand factor multiplying (e1eF) in Eq.
~21! was odd ine on the (2\vD ,\vD) interval, so theeF
term dropped out. Now, the corresponding factor in Eq.~48!
is even ine, so theeF term survives, and thee term is nil.
The comparative ratio of the two is;105 K:3 K, i.e., the
Fermi temperature of In toTc . Furthermore sincef , Eq.
~11!, is even, the second term~in brackets! of Eq. ~48! is also
even; and it is also positive becausedD/dT, from Eq.~29!, is
negative. It turns out that in the final analysis this second
term contributes about four times more than the first. There-
fore the needed 105-fold boost in the~theoretical! thermo-
electric flux is already at hand.

It can be seen from Eq.~18! and the (e/E)2 coherence
factor that ts diverges as 1/ueu near e50. This behavior
doesn’t cause a problem for the first term~in brackets! of Eq.
~48!; but it does for the second, which will generate a loga-
rithmic divergence of the integral. Consequently we must
explore possible mechanisms which prevent the scattering
time,ts , from being infinite ate50. ~It seems ironic that the
problem here is to prevent the hoped-for 105-fold enhance-
ment of the predicted thermoelectric flux from being too
large.! Inelastic scattering can limitts at e50, but such
events are relatively rare at 3 K~and those which occur do
not retard much momentum!. Similarly, an anisotropic en-
ergy gap will shortents , but an heuristic model with un-
known parameters would have to be invented. However,
there is an unambiguous scattering process that puts an ad-
equate ceiling onts .

V. SPIN-FLIP SCATTERING OF QUASIPARTICLES

The divergence of the elastic scattering time ate50
arises from the BCS coherence factor (e/E)2 which reduces
the scattering rate to zero fore50. However, if the spin of
the quasiparticle is flipped, the coherence factor for an elastic
transition from a statee to another state having the samee is
unity. The divergence would then not occur. Another type of
transition, involving a spin flip to a final state having,
e852e, is also elastic becauseEk , Eq. ~9!, depends on
e2. However, this process violates electron conservation, as
can be seen easily by considering the two quartets, c.f. Eq.
~6!, for kW and k8W . One such transition is from (kW , level 2;
k8W , level 1! to (kW , level 1;k8W , level 3!. The change in the total
electron number would be

DN52@v~e!#222@v~2e!#2522
e

E
. ~49!

Accordingly, we shall neglect these events and focus on the
allowed, electron-conserving ones.

The spin-flip scattering we consider here is caused by the
Fermi hyperfine coupling to the nuclear spins. Such pro-
cesses have been studied previously,20 and we follow that
treatment. If the nuclear spin isI51/2, the Fermi coupling is

H5
8p

3
bebnsW e•sW nd~rW !. ~50!

d(rW) is the Dirac delta function,be is the Bohr magneton,
andbn is the nuclear moment. Thes ’s are the usual Pauli
matrices, andsW e•sW n can be expressed in terms of the raising
and lowering operators:

sW e•sW n52~sn
1se

21sn
2se

1!1sn
zse

z . ~51!

The first term flips an electron spin from up to down and the
nuclear spin from down to up. The transition rate fromkW↑,
level 2 of quartetkW , to all possible spin-down possible final
states having the samee is

Re5
2p

\ SN2 D S 16pbebn

3 D 2uC~0!u4N~0!

3@ f 1~e8!1 f 4~e8!#
E

ueu
. ~52!

N/2 is the down-spin density of nuclear spins, anduC(0)u is
the magnitude of the conduction-electron wave function at
the nucleus.N(0) is the density of states~per spin!, Eq. ~24!,
which is also

N~0!5~mkF!/~2p2\2!, ~53!

and the last factor,E/ueu, is its BCS enhancement. Finally,
the factor in square brackets appears because the quartet,
k8W , before the transition must be either in level 1 or 4.~After
the transition, quartet,kW , will be in level 1 or 4, respectively.!
Sincee85e, Eqs.~10! and ~11! determine this factor

f 11 f 45
cosh~bE!

2cosh2~ 1
2 bE!

. ~54!

The generalization of Eq.~52! for arbitrary nuclear spinI is
obtained by the following substitutions:20

N

2
→

N

2I11
, bn→

bn

2I
. ~55!

One must also include the multiplicity of transitions,
$mI→mI11% between the 2I11 nuclear magnetic states by
the multiplication factor

G5 (
m52I

m5I

~ I1m21!~ I2m!5
2

3
I ~ I11!~2I11!. ~56!

The final expression for the scattering rate involving a spin
flip is, from Eqs.~52!–~56!,
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Re5
64pNmkFbe

2bn
2uC~0!u4~ I11!Ecosh~bE!

27\3I ueucosh2~ 1
2 bE!

. ~57!

The complexity of the foregoing transition rate can be
eliminated by the measured nuclear spin relaxation rate for
In in the normal state. In the notation employed here, the
nuclear-spin relaxation timeT1n is

20

T1n5
9p\5I 2

64m2kF
2be

2bn
2kBTuC~0!u4

, ~58!

equivalent to a result first derived by Korringa.21 The product
of Eqs.~57! and ~58! provides considerable cancellation

Re5
2NeFI ~ I11!Ecosh~bE!

9nkBueucosh2~ 1
2 bE!T1nT

. ~59!

Now, the last factor in the denominator has been measured in
a nuclear magnetic resonance study of In22

1

T1nT
512.7~sK!21. ~60!

Since I59/2, eF58.6 eV, andn/N53, the spin-flip transi-
tion rate is

Re5
2.3Ecosh~bE!

ueucosh2S 12bED 3106 s21. ~61!

VI. THERMAL DIFFUSION CURRENT
AND THE INDUCED FLUX

The thermal diffusion coefficientas , defined by Eq.~25!
and expressed in closed form by Eq.~48!, requires insertion
of thee-dependent relaxation timets to allow completion of
the indicated integration. The total scattering rate is

1

ts
5

ueu
Etn

1
2.33106Ecosh~bE!

ueucosh2~ 1
2 bE!

. ~62!

The first term is the transition rate, Eq.~18!, caused by im-
purity scattering; and the second term is the spin-flip scatter-
ing rate, Eq.~61!, caused by hyperfine interactions with In
nuclear spins. The integral in Eq.~48! is now well defined
and can be evaluated after conversion to an integration in
dE, as done previously in Eqs.~22! and ~23!. Accordingly,
for a normal state relaxation timetn ~taken constant! and
vD set ~without compromise! to `,

as5
8eeFtnN~0!

3mkBT
2

3E
D

`F f ~12 f !E2kBT
2DS dD

dTD f

E22D21AGdE, ~63!

where

A52.33106tn
E2cosh~bE!

cosh2~ 1
2 bE!

. ~64!

The spin-flip relaxation was omitted in the first term of the
integrand, but its non-negligible role in the second term is
evident. f (bE) is given by Eq.~11!.

The first term of the integral can be done exactly. How-
ever, the second must be carried out numerically. Equation
~29! is used to calculateD(dD/dT). With x5bE, Eq. ~63!
becomes

as5
8ekBeFtnN~0!

3m
I , ~65!

where

I ~T!5bD f ~bD!1 ln~11e2bD!1
4p2T

7z~3!Tc
I 0 ~66!

and

I 0~T!5E
bD

` Fx22b2D212.33106tn
x2coshx

cosh2~ 1
2 x!

G21

f ~x!dx.

~67!

The variation ofD with temperature is taken from Eq.~29!.
I (T), which is dimensionless, is shown in Fig. 5 for tempera-
tures within 10 mK ofTc .

The flux derivative,dF/dT, is now found from Eqs.~5!,
~24!, ~30!, ~32!, and~65!. With F05\c/2e,

dF

dT
5

1.2I ~T!

12~T/Tc!
F0K

21. ~68!

~The coefficient, 1.2, is justkBtn /p\.! This final result is
shown with the data of Van Harlingenet al.9 in Fig. 6. Not
only is the theoretical magnitude correct but so is the power-
law slope, i.e.,;21.5. No unknown or adjustable param-
eters were involved in the foregoing derivation.

FIG. 5. Temperature variation of the dimensionless factor
I (T), Eq. ~66!, nearTc of In. The thermoelectric flux,dF/dT, is
proportional toI (T)/@12(T/Tc)#.
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VII. DISCUSSION

A question which arises on inspection of Fig. 6 is why the
data exhibit a large spread in values. The variations are in
fact more dramatic than they appear since the thermoelectric
flux observed in samples 2 and 7 has an algebraic sign op-
posite to that of the other five. Van Harlingenet al. plotted
udF/dTu.9 They also measured the thermoelectric power,
S, of each In sample in the normal state, and found thatS is
proportional todF/dT, including the sign reversal. Since a
reasonable explanation of such a variation is possible~and is
given below!, the disparate data of Fig. 6 are indeed ex-
pected.

In has a tetragonally distorted fcc lattice.23 The c/a ratio
is 1.078, so transport coefficients will be anisotropic. Caplin

et al. measured the absoluteS(T) of single crystalline In
parallel to both thea andc axes.24 Near 10 K,S is positive
parallel to thea axis, but is negative parallel to thec axis.
Therefore one expects that measurements on polycrystalline
In should vary substantially and depend on the orientational
texture of the sample. The 0.25 mm thick In cylinders shown
in Fig. 2 were constructed from freshly rolled In pellets. The
rolling process creates an orientational texture, presumably
with the c axis dominant in the rolling direction. Therefore
one should expect that the observed magnitude and sign of
S and dF/dT in the toroidal samples will depend on the
orientation of¹T with respect to the rolling direction, an
unrecorded datum.

The theoretical message of this work is that one is not
allowed to use a Boltzmann transport equation to study the
time evolution of BV quasiparticles in an inhomogeneous
environment. What is surprising is that failure to conserve
electrons locally in each volume,d3kd3r , of phase space can
lead to theoretical errors as large as factors of 105–106. In
retrospect, were such a severe pathology not forthcoming
and, instead, if only minor discrepancies were evident, the
strict imperative to conserve electrons might have escaped
notice for many more years. The Garland–Van Harlingen
experiment is a most significant event.

It seems likely that past confidence placed in the Boltz-
mann equation for BV quasiparticles is primarily due to the
apparent success25 of BRT’s analysis of thermal transport.14

Obviously, this problem needs to be revisited. One cannot
combine the solution, Eq.~46!, of the electron-conserving
transport equation with BRT’s assumed energy flux,

( f kEkrẆ, and find a satisfactory thermal current. Naturally,
we believe that the energy flux needs to be reformulated.26 A
truly basic problem in the theory of superconductivity awaits
solution.
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