608 research outputs found

    Comment on ``Phase ordering in chaotic map lattices with conserved dynamics''

    Full text link
    Angelini, Pellicoro, and Stramaglia [Phys. Rev. E {\bf 60}, R5021 (1999), cond-mat/9907149] (APS) claim that the phase ordering of two-dimensional systems of sequentially-updated chaotic maps with conserved ``order parameter'' does not belong, for large regions of parameter space, to the expected universality class. We show here that these results are due to a slow crossover and that a careful treatment of the data yields normal dynamical scaling. Moreover, we construct better models, i.e. synchronously-updated coupled map lattices, which are exempt from these crossover effects, and allow for the first precise estimates of persistence exponents in this case.Comment: 3 pages, to be published in Phys. Rev.

    Lamellae Stability in Confined Systems with Gravity

    Full text link
    The microphase separation of a diblock copolymer melt confined by hard walls and in the presence of a gravitational field is simulated by means of a cell dynamical system model. It is found that the presence of hard walls normal to the gravitational field are key ingredients to the formation of well ordered lamellae in BCP melts. To this effect the currents in the directions normal and parallel to the field are calculated along the interface of a lamellar domain, showing that the formation of lamellae parallel to the hard boundaries and normal to the field correspond to the stable configuration. Also, it is found thet the field increases the interface width.Comment: 4 pages, 2 figures, submitted to Physical Review

    Accurate effective pair potentials for polymer solutions

    Full text link
    Dilute or semi-dilute solutions of non-intersecting self-avoiding walk (SAW) polymer chains are mapped onto a fluid of ``soft'' particles interacting via an effective pair potential between their centers of mass. This mapping is achieved by inverting the pair distribution function of the centers of mass of the original polymer chains, using integral equation techniques from the theory of simple fluids. The resulting effective pair potential is finite at all distances, has a range of the order of the radius of gyration, and turns out to be only moderately concentration-dependent. The dependence of the effective potential on polymer length is analyzed in an effort to extract the scaling limit. The effective potential is used to derive the osmotic equation of state, which is compared to simulation data for the full SAW segment model, and to the predictions of renormalization group calculations. A similar inversion procedure is used to derive an effective wall-polymer potential from the center of mass density profiles near the wall, obtained from simulations of the full polymer segment model. The resulting wall-polymer potential turns out to depend strongly on bulk polymer concentration when polymer-polymer correlations are taken into account, leading to a considerable enhancement of the effective repulsion with increasing concentration. The effective polymer-polymer and wall-polymer potentials are combined to calculate the depletion interaction induced by SAW polymers between two walls. The calculated depletion interaction agrees well with the ``exact'' results from much more computer-intensive direct simulation of the full polymer-segment model, and clearly illustrates the inadequacy -- in the semi-dilute regime -- of the standard Asakura-Oosawa approximation based on the assumption of non-interacting polymer coils.Comment: 18 pages, 24 figures, ReVTeX, submitted to J. Chem. Phy

    The law of action and reaction for the effective force in a nonequilibrium colloidal system

    Full text link
    We study a nonequilibrium Langevin many-body system containing two 'test' particles and many 'background' particles. The test particles are spatially confined by a harmonic potential, and the background particles are driven by an external driving force. Employing numerical simulations of the model, we formulate an effective description of the two test particles in a nonequilibrium steady state. In particular, we investigate several different definitions of the effective force acting between the test particles. We find that the law of action and reaction does not hold for the total mechanical force exerted by the background particles, but that it does hold for the thermodynamic force defined operationally on the basis of an idea used to extend the first law of thermodynamics to nonequilibrium steady states.Comment: 13 page

    The role of the alloy structure in the magnetic behavior of granular systems

    Get PDF
    The effect of grain size, easy magnetization axis and anisotropy constant distributions in the irreversible magnetic behavior of granular alloys is considered. A simulated granular alloy is used to provide a realistic grain structure for the Monte Carlo simulation of the ZFC-FC curves. The effect of annealing and external field is also studied. The simulation curves are in good agreement with the FC and ZFC magnetization curves measured on melt spun Cu-Co ribbons.Comment: 13 pages, 10 figures, submitted to PR

    Phase Separation Kinetics in a Model with Order-Parameter Dependent Mobility

    Full text link
    We present extensive results from 2-dimensional simulations of phase separation kinetics in a model with order-parameter dependent mobility. We find that the time-dependent structure factor exhibits dynamical scaling and the scaling function is numerically indistinguishable from that for the Cahn-Hilliard (CH) equation, even in the limit where surface diffusion is the mechanism for domain growth. This supports the view that the scaling form of the structure factor is "universal" and leads us to question the conventional wisdom that an accurate representation of the scaled structure factor for the CH equation can only be obtained from a theory which correctly models bulk diffusion.Comment: To appear in PRE, figures available on reques

    Coupled Map Modeling for Cloud Dynamics

    Get PDF
    A coupled map model for cloud dynamics is proposed, which consists of the successive operations of the physical processes; buoyancy, diffusion, viscosity, adiabatic expansion, fall of a droplet by gravity, descent flow dragged by the falling droplet, and advection. Through extensive simulations, the phases corresponding to stratus, cumulus, stratocumulus and cumulonimbus are found, with the change of the ground temperature and the moisture of the air. They are characterized by order parameters such as the cluster number, perimeter-to-area ratio of a cloud, and Kolmogorov-Sinai entropy.Comment: 9 pages, 4 figure, LaTeX, mpeg simulations available at http://aurora.elsip.hokudai.ac.jp

    Early stage scaling in phase ordering kinetics

    Full text link
    A global analysis of the scaling behaviour of a system with a scalar order parameter quenched to zero temperature is obtained by numerical simulation of the Ginzburg-Landau equation with conserved and non conserved order parameter. A rich structure emerges, characterized by early and asymptotic scaling regimes, separated by a crossover. The interplay among different dynamical behaviours is investigated by varying the parameters of the quench and can be interpreted as due to the competition of different dynamical fixed points.Comment: 21 pages, latex, 7 figures available upon request from [email protected]

    Coupled Maps on Trees

    Get PDF
    We study coupled maps on a Cayley tree, with local (nearest-neighbor) interactions, and with a variety of boundary conditions. The homogeneous state (where every lattice site has the same value) and the node-synchronized state (where sites of a given generation have the same value) are both shown to occur for particular values of the parameters and coupling constants. We study the stability of these states and their domains of attraction. As the number of sites that become synchronized is much higher compared to that on a regular lattice, control is easier to effect. A general procedure is given to deduce the eigenvalue spectrum for these states. Perturbations of the synchronized state lead to different spatio-temporal structures. We find that a mean-field like treatment is valid on this (effectively infinite dimensional) lattice.Comment: latex file (25 pages), 4 figures included. To be published in Phys. Rev.
    corecore