1,157 research outputs found

    Catching the "Local" Bug: A Look at State Agricultural Marketing Programs

    Get PDF
    State Marketing Program, Local Foods, Consumer Awareness, State-Sponsored Logos, Mid-Atlantic Region, Marketing,

    Comparing Willingness to Pay for Organic, Natural, Locally Grown, and State Marketing Program Promoted Foods in the Mid-Atlantic Region

    Get PDF
    A choice experiment of Mid-Atlantic consumers was conducted to determine marginal willingness to pay for the attributes organic, natural, locally grown, and state marketing program promoted for strawberry preserves. The influence of purchasing venue on willingness to pay was also examined. Results indicated a price premium when purchased at a farmers market across all five states and versions. Organic was preferred to natural in only one state. Preference ordering between local and state program promoted varied. Consumers in Maryland and Pennsylvania clearly preferred local, while those in New Jersey seemed most likely to prefer the state program version.organic, natural, locally grown, state marketing program, choice experiment, Consumer/Household Economics, Demand and Price Analysis, Marketing,

    A Thirty-Four Billion Solar Mass Black Hole in SMSS J2157-3602, the Most Luminous Known Quasar

    Get PDF
    From near-infrared spectroscopic measurements of the MgII emission line doublet, we estimate the black hole (BH) mass of the quasar, SMSS J215728.21-360215.1, as being (3.4 +/- 0.6) x 10^10 M_sun and refine the redshift of the quasar to be z=4.692. SMSS J2157 is the most luminous known quasar, with a 3000A luminosity of (4.7 +/- 0.5) x 10^47 erg/s and an estimated bolometric luminosity of 1.6 x 10^48 erg/s, yet its Eddington ratio is only ~0.4. Thus, the high luminosity of this quasar is a consequence of its extremely large BH -- one of the most massive BHs at z > 4.Comment: 7 pages, 3 figures. Accepted for publication in MNRA

    Uveal melanoma cells utilize a novel route for transendothelial migration

    Get PDF
    Uveal melanoma arises in the eye, and it spreads to distant organs in almost half of patients, leading to a fatal outcome. To metastasize, uveal melanoma cells must transmigrate into and out of the microvasculature, crossing the monolayer of endothelial cells that separates the vessel lumen from surrounding tissues. We investigated how human uveal melanoma cells cross the endothelial cell monolayer, using a cultured cell system with primary human endothelial cell monolayers on hydrogel substrates. We found that uveal melanoma cells transmigrate by a novel and unexpected mechanism. Uveal melanoma cells intercalate into the endothelial cell monolayer and flatten out, assuming a shape and geometry similar to those of endothelial cells in the monolayer. After an extended period of time in the intercalated state, the uveal melanoma cells round up and migrate underneath the monolayer. VCAM is present on endothelial cells, and anti-VCAM antibodies slowed the process of intercalation. Depletion of BAP1, a known suppressor of metastasis in patients, increased the amount of transmigration of uveal melanoma cells in transwell assays; but BAP1 depletion did not affect the rate of intercalation, based on movies of living cells. Our results reveal a novel route of transendothelial migration for uveal melanoma cells, and they provide insight into the mechanism by which loss of BAP1 promotes metastasis

    Analyzing Short-Term Noise Dependencies of Spike-Counts in Macaque Prefrontal Cortex Using Copulas and the Flashlight Transformation

    Get PDF
    Simultaneous spike-counts of neural populations are typically modeled by a Gaussian distribution. On short time scales, however, this distribution is too restrictive to describe and analyze multivariate distributions of discrete spike-counts. We present an alternative that is based on copulas and can account for arbitrary marginal distributions, including Poisson and negative binomial distributions as well as second and higher-order interactions. We describe maximum likelihood-based procedures for fitting copula-based models to spike-count data, and we derive a so-called flashlight transformation which makes it possible to move the tail dependence of an arbitrary copula into an arbitrary orthant of the multivariate probability distribution. Mixtures of copulas that combine different dependence structures and thereby model different driving processes simultaneously are also introduced. First, we apply copula-based models to populations of integrate-and-fire neurons receiving partially correlated input and show that the best fitting copulas provide information about the functional connectivity of coupled neurons which can be extracted using the flashlight transformation. We then apply the new method to data which were recorded from macaque prefrontal cortex using a multi-tetrode array. We find that copula-based distributions with negative binomial marginals provide an appropriate stochastic model for the multivariate spike-count distributions rather than the multivariate Poisson latent variables distribution and the often used multivariate normal distribution. The dependence structure of these distributions provides evidence for common inhibitory input to all recorded stimulus encoding neurons. Finally, we show that copula-based models can be successfully used to evaluate neural codes, e. g., to characterize stimulus-dependent spike-count distributions with information measures. This demonstrates that copula-based models are not only a versatile class of models for multivariate distributions of spike-counts, but that those models can be exploited to understand functional dependencies

    Transposase mapping identifies the genomic targets of BAP1 in uveal melanoma

    Get PDF
    Table summarizing the RNA-seq results. Differential gene expression results in BAP1-knockdown compared to control OCM-1A cells are shown from the RNA-seq data. Each row gives the unique Ensembl identifier, gene name, and description for each gene, as well as the log of the fold change (logFC), average expression, adjusted p-value, and linear fold change. (XLSX 1392 kb

    Reverberation Mapping Results from MDM Observatory

    Get PDF
    We present results from a multi-month reverberation mapping campaign undertaken primarily at MDM Observatory with supporting observations from around the world. We measure broad line region (BLR) radii and black hole masses for six objects. A velocity-resolved analysis of the H_beta response shows the presence of diverse kinematic signatures in the BLR.Comment: To appear in the Proceedings of the IAU Symposium No. 267: Co-Evolution of Central Black Holes and Galaxies, Rio de Janeiro, 200

    The Black Hole Mass of NGC 4151. II. Stellar Dynamical Measurement from Near-Infrared Integral Field Spectroscopy

    Get PDF
    We present a revised measurement of the mass of the central black hole (Mbh) in the Seyfert 1 galaxy NGC 4151. The new stellar dynamical mass measurement is derived by applying an axisymmetric orbit-superposition code to near-infrared integral field data obtained using adaptive optics with the Gemini NIFS spectrograph. When our models attempt to fit both the NIFS kinematics and additional low spatial resolution kinematics, our results depend sensitively on how chi-squared is computed--probably a consequence of complex bar kinematics that manifest immediately outside the nuclear region. The most robust results are obtained when only the high spatial resolution kinematic constraints in the nuclear region are included in the fit. Our best estimates for the BH mass and H-band mass-to-light ratio are Mbh~(3.76+/-1.15)E7 Msun (1-sigma error) and M/L(H-band)~0.34+/-0.03 Msun/Lsun (3-sigma error), respectively (the quoted errors reflect the model uncertainties). Our BH mass measurement is consistent with estimates from both reverberation mapping (3.57[+0.45/-0.37]E7 Msun) and gas kinematics (3.0[+0.75/-2.2]E7 Msun; 1-sigma errors), and our best-fit mass-to-light ratio is consistent with the photometric estimate of M/L(H-band)=0.4+/-0.2 Msun/Lsun. The NIFS kinematics give a central bulge velocity dispersion sigma_c=116+/-3 km/s, bringing this object slightly closer to the M-sigma relation for quiescent galaxies. Although NGC 4151 is one of only a few Seyfert 1 galaxies in which it is possible to obtain a direct dynamical BH mass measurement--and thus, an independent calibration of the reverberation mapping mass scale--the complex bar kinematics makes it less than ideally suited for this purpose.Comment: 21 pages, 15 figures. Accepted for publication in Ap
    corecore