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Abstract

Simultaneous spike-counts of neural populations are typically modeled by a Gaussian distribution. On short time scales,
however, this distribution is too restrictive to describe and analyze multivariate distributions of discrete spike-counts. We
present an alternative that is based on copulas and can account for arbitrary marginal distributions, including Poisson and
negative binomial distributions as well as second and higher-order interactions. We describe maximum likelihood-based
procedures for fitting copula-based models to spike-count data, and we derive a so-called flashlight transformation which
makes it possible to move the tail dependence of an arbitrary copula into an arbitrary orthant of the multivariate probability
distribution. Mixtures of copulas that combine different dependence structures and thereby model different driving
processes simultaneously are also introduced. First, we apply copula-based models to populations of integrate-and-fire
neurons receiving partially correlated input and show that the best fitting copulas provide information about the functional
connectivity of coupled neurons which can be extracted using the flashlight transformation. We then apply the new
method to data which were recorded from macaque prefrontal cortex using a multi-tetrode array. We find that copula-
based distributions with negative binomial marginals provide an appropriate stochastic model for the multivariate spike-
count distributions rather than the multivariate Poisson latent variables distribution and the often used multivariate normal
distribution. The dependence structure of these distributions provides evidence for common inhibitory input to all recorded
stimulus encoding neurons. Finally, we show that copula-based models can be successfully used to evaluate neural codes,
e.g., to characterize stimulus-dependent spike-count distributions with information measures. This demonstrates that
copula-based models are not only a versatile class of models for multivariate distributions of spike-counts, but that those
models can be exploited to understand functional dependencies.
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Introduction

So far, it is still unknown which statistics are crucial for analysis

in order to understand the neural code. One approach is to

analyze simultaneous spike-counts of neural populations. Respons-

es from populations of sensory neurons vary even when the same

stimulus is presented repeatedly, and the variations between the

simultaneous spike-counts are usually correlated (noise correlations) at

least for neighboring neurons. These noise correlations have been

subject of a substantial number of studies (see [1] for a review). For

computational reasons, however, these studies typically assume

Gaussian noise. Thus, correlated spike rates are generally modeled

by multivariate normal distributions with a specific covariance

matrix that describes all pairwise linear correlations.

For long time intervals or high firing rates, the average number

of spikes is sufficiently large for the central limit theorem to apply and

the normal distribution is a good approximation for the spike-

count distributions. Several experimental findings, however,

suggest that processing of sensory information can take place on

shorter time scales, involving only tens to hundreds of milliseconds

[2,3]. In this regime the normal distribution is no longer a valid

approximation:

(1) Its marginals are continuous with a symmetric shape, whereas

empirical distributions of real spike-counts tend to have a

positive skew (see Figure 1A).

(2) The normal distribution has to be heuristically modified in

order to avoid positive probabilities for negative values which

are not meaningful for spike-counts. This is a major issue for

low rates for which the probability of negative values would be

high.

(3) The dependence structure of a multivariate normal distribu-

tion is always elliptical, whereas spike-count data often show a

so-called tail-dependence with probability mass concentrated

on one of the corners (see Figure 1A).

(4) The multivariate normal distribution assumes second order

correlations only. Although it was shown that pairwise
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interactions are sufficient for describing the spike-count

distributions of retinal ganglion cells and cortex cells in vitro

[4], there is evidence for significant higher order interactions

of spike-counts recorded from cortical areas in vivo [5].

Though not widespread for modeling spike-counts, alternative

models have been proposed in previous studies that have Poisson

distributed marginals and separate parameters for higher order

correlations, e.g. the multiple interaction process model [6] and

the compound Poisson model [7]. Both models are point

processes. In terms of their induced spike-count distributions these

models are special cases of the multivariate Poisson latent variables

distribution first introduced by Kawamura [8] and presented in a

compact matrix notation by Karlis and Meligkotsidou [9]. Similar

to the multivariate normal distribution this model has also a couple

of shortcomings for spike-count modeling: (1) Only Poisson-

marginals can be modeled. (2) Negative correlations cannot be

represented. (3) The dependence structure is inflexible: features

like tail dependence cannot be modeled.

We use and extend a versatile class of models for multivariate

discrete distributions that overcome the shortcomings of the afore-

mentioned models [10,11]. These models are based on the

concept of copulas [12], which allow to combine arbitrary marginal

distributions using a rich set of dependence structures. In

neuroscience they were also applied to model the distribution of

continuous first-spike-latencies [13].

Figure 1 illustrates the copula concept using spike-count data

from two real neurons. Figure 1A shows the bivariate empirical

distribution and its two marginals. The distribution of the counts

depends on the length of the time bin that is used to count the

spikes, here 100 ms. In the case considered, the correlation at low

counts is higher than at high counts. This is called lower tail

dependence [12]. Figure 1B shows the discretized and rectified

multivariate normal distribution. On the other hand, the spike-

count probabilities for a copula-based distribution (Figure 1C)

correspond well to the empirical distribution in Figure 1A.

The paper is organized as follows. The next Section ‘‘Materials

and Methods’’ contains a description of methodological details

regarding the multivariate normal distribution, the multivariate

Poisson latent variables distribution, the copula approach for spike-

counts and the model fitting procedures. In this section we will also

introduce a novel transformation for copula families. The method is

innovative and yields a novel result. We will then describe the

computational model used to generate synthetic data and the

experimental recording and analysis procedures. In the Section

‘‘Results’’ copula-based models will be applied to artificial data

generated by integrate-and-fire models of coupled neural popula-

tions and to data recorded from macaque prefrontal cortex (PFC)

during a visual memory task. The appropriateness of the models is

also investigated. The paper concludes with a discussion of the

strengths and weaknesses of the copula approach for spike-counts.

Materials and Methods

Ethics Statement
All procedures were approved by the local authorities

(Regierungspräsidium) and are in full compliance with the

guidelines of the European Community (EUVD 86/609/EEC)

for the care and use of laboratory animals.

The Discretized Multivariate Normal Distribution
The multivariate normal (MVN) distribution is characterized by

a probability density over continuous variables x1, . . . ,xd and its

Figure 1. Modeling a spike-count distribution. (A) Normalized empirical distributions of spike-counts from a pair of neurons recorded in
macaque prefrontal cortex (see Section ‘‘Materials and Methods’’). The bin size was 100 ms. Gray values of the squares denote the number of
occurrences of pairs of spike-counts (dark to bright corresponding to low to high, see scale bar). The corresponding marginals are plotted below and
left of the coordinate axes. The distribution is based on 431 occurrences. (B) Joint distribution and marginals of the discretized and rectified
multivariate normal distribution with the mean and covariance matrix set to the sample mean and sample covariance matrix. (C) Joint distribution
and marginals of the best fitting Clayton copula (see Section ‘‘Multivariate Spike-Count Distributions Based on Copulas’’, parameter: a~1:295) and
negative binomial marginals (parameters: l1~4:761,n1~3:790,l2~1:479,n2~1:166).
doi:10.1371/journal.pcbi.1000577.g001

Author Summary

The brain has an enormous number of neurons that do not
work alone but in an ensemble. Yet, mostly individual
neurons were measured in the past and therefore models
were restricted to independent neurons. With the advent
of new multi-electrode techniques, however, it becomes
possible to measure a great number of neurons simulta-
neously. As a result, models of how populations of neurons
co-vary are becoming increasingly important. Here, we
describe such a framework based on so-called copulas.
Copulas allow to separate the neural variation structure of
the population from the variability of the individual
neurons. Contrary to standard models, versatile depen-
dence structures can be described using this approach. We
explore what additional information is provided by the
detailed dependence. For simulated neurons, we show
that the variation structure of the population allows
inference of the underlying connectivity structure of the
neurons. The power of the approach is demonstrated on a
memory experiment in macaque monkey. We show that
our framework describes the measurements better than
the standard models and identify possible network
connections of the measured neurons.

Spike-Count Copula Models
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cumulative distribution function (CDF) with mean m and

covariance matrix S is given by

Wm,S x1, . . . ,xdð Þ~
ðx1

{?
. . .

ðxd

{?

1

2pð Þd=2jSj1=2
exp {

1

2
y{mð ÞT S{1 y{mð Þ

� �
dy1 . . . dyd :

In order to apply it to spike-count distributions (which are

discrete and non-negative) it is discretized and rectified (probabil-

ity for negative values is set to zero). Its CDF is given by

FX x1, . . . ,xdð Þ~
Wm,Stx1s, . . . ,txdsÞ ifVi [ 1, . . . ,df g : xi§0,

0 otherwise,

�
where t:s denotes the floor operation for the discretization. The

probability mass function will have peaks at the zero count rows,

due to the rectification of the CDF. It would be desirable to

distribute the cut off mass equally to the complete domain.

However, this is infeasible for more than three dimensions,

because the necessary normalization term is computationally too

time-consuming. Note that m is no longer the mean of the

distribution corresponding to FX, because the mean is shifted to

larger values as Wm,S is rectified. This shift grows with the

dimension d .

The Poisson Latent Variables Distribution
The Poisson latent variables distribution is characterized by a

probability mass function (PMF) over non-negative integer variables

x1, . . . ,xd [9]. A random variable X with this distribution is

composed of k [ 1, . . . ,2d{1
� �

latent variables Y1, . . . ,Yk. These

latent variables are independent univariate Poisson distributed with

rates l1, . . . ,lk§0: X takes the form X~AY , where

A [ 0,1f gd|k
is a mixture matrix. The PMF of X is then given by

PX x1, . . . ,xdð Þ~
X

y jA y~xf g
PY (y)

~ exp {
Xk

i~1

li

 ! X
y jA y~xf g

P
k

i~1

lið Þyi

yi!
:

When we set k to 2d{1 we can vary all pairwise and higher

order interactions separately using the rates of the latent variables.

However, only non-negative correlations can be modeled, because

the rates of the latent variables are non-negative. Furthermore, the

Xi are marginally Poisson distributed.

Copula Models of Multivariate Distributions
A copula is a cumulative distribution function (CDF) which is

defined on the unit hypercube and which has uniform marginals

[12]. Formally, a copula C is defined as follows:

Definition 1. A d-copula is a function C : 0,1½ �d? 0,1½ � such that

Vu [ 0,1½ �d :

1. C uð Þ~0 if at least one coordinate of u is 0.

2. C uð Þ~uk if all coordinates of u are 1 except uk.

3. Let VC u,v½ �ð Þ~
P2

i1~1 . . .
P2

id ~1 {1ð Þi1z...zid C g1,i1 , . . . ,gd,idð Þ,
gj,1~uj ,gj,2~vj , then VC u,v½ �ð Þ§0 f or all v [ 0,1½ �d with uƒv.

Property 3 states that the mass in every hypercube is non-

negative. Together with property 1 it guarantees that C is a proper

CDF on the unit hypercube, whereas property 2 ensures uniform

marginals.

Copulas can now be used to couple arbitrary marginal CDFs to

form a joint CDF. This is formalized in Sklar’s Theorem [12,14],

which states:

Theorem 1. Let FX be a d-dimensional cumulative distribution

function with marginals FX1
,:::,FXd

. Then there exists a d-copula C such

that for all r [ Domain FXð Þ :

FX x1, . . . ,xdð Þ~C FX1
x1ð Þ, . . . ,FXd

xdð Þð Þ:

C is unique, if FX1
,:::,FXd

are all continuous, and unique on

Range FX1
ð Þ| . . . |Range FXd

ð Þ, if FX1
,:::,FXd

are discrete.

Conversely, if C is a d-copula and FX1
,:::,FXd

are CDFs, then the

function FX defined by FX x1, . . . ,xdð Þ~C FX1
x1ð Þ, . . . ,FXd

xdð Þð Þ is a

d-dimensional CDF with marginals FX1
,:::,FXd

.

Theorem 1 provides a way to construct multivariate distribu-

tions by attaching marginal CDFs to copulas. Copulas make an

attachment possible, because they have continuous uniform

marginals. In the univariate case a continuous uniform distribution

on the unit interval can be easily transformed into any other

distribution by applying the inverse of its CDF (inversion method).

In the case of discrete marginal distributions, however, typical

measures of dependence, such as Pearson’s correlation coefficient

or Kendall’s t are effected by the shape of these marginals. This is

due to the restricted uniqueness of the copula to the range of the

discrete marginal distributions [15]. Moreover, an interpretation

of the dependence structure for varying discrete marginals is

difficult [15]. In this study, copula families are compared with

respect to fixed marginals.

Multivariate Spike-Count Distributions Based on Copulas
Our goal is to construct multivariate distributions for simulta-

neously recorded spike-counts that can model a wide range of

dependence structures. Copulas make it possible to model

multivariate distributions based on two distinct parts: the distribu-

tions of the individual elements and the dependence structure. Let

us now assume that xi represents the spike-count of neuron i within

a given interval. According to Theorem 1 we can then describe the

joint cumulative distribution function of the spike counts FX by

choosing a copula Ca from a particular family, and by setting

ui~FXi
xið Þ and FX~Ca uð Þ. FXi

xið Þ are the models of the

marginal distributions, i.e. the cumulative distributions of spike-

counts of the individual neurons. Often, the Poisson distribution is a

good approximation to spike-count variations of single neurons

[16], hence the CDFs of the marginals take the form

FXi
x; lið Þ~

Xtxs

k~0

lk
i

k!
e{li :

li is the mean spike-count of neuron i for a given bin size. A more

flexible marginal is the negative binomial distribution,

FXi
r; li,uið Þ~

Xtrs
k~0

lk
i

k!

1

1z
li

ui

� �ui

C uizkð Þ
C uið Þ uizlið Þk

,

which allows to model spike-count distributions showing over-

dispersion. Here C is the gamma function, li is again the mean

spike-count of neuron i, and ui is a positive parameter, which

controls the degree of overdispersion. The smaller the value of ui,

the greater is the Fano factor, and as ui approaches infinity, the

negative binomial distribution converges to the Poisson distribution.

Spike-Count Copula Models
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The second part of the model is the copula family. Many

different families have been discussed in the literature in the past.

Families differ by the number of free parameters and by the class

of dependence structures they can represent. The most simplistic

copula is the product copula defined as P uð Þ : ~Pd
i~1 ui for

which independence is attained. We selected a number of useful

copula families (see Table 1). Figure 2 shows their bivariate

probability density functions (PDFs).

The Clayton family has a so-called lower tail dependence: the

correlation between its elements is higher for low values than for

high values (see Figure 2A). The scalar parameter a controls the

strength of dependence. Note that a does not only control the

strength of pairwise interactions but also the degree of higher

order interactions. We define C0 : ~P.

The Gumbel-Hougaard (short Gumbel) family has an upper tail

dependence. Here, the region of high correlation is in the upper

right corner of the density. Hence, the correlation between its

elements is higher for high values than for low values (see

Figure 2B). The scalar parameter a controls the strength of

dependence.

The Frank family has no tail dependence. There is no difference

between the correlation for low and for high values (see Figure 2C).

Again, the scalar parameter a controls the strength of dependence

and we define C0 : ~P.

The Ali-Mikhail-Haq (AMH) family models are positively

ordered, i.e. for a1ƒa2 it holds for all u : Ca1
uð ÞƒCa2

uð Þ (see

Figure 2D). Again we define C0 : ~P.

The Farlie-Gumbel-Morgenstern (FGM) family has 2d{d{1
parameters that individually determine the pairwise and higher

order interactions. It has d parameters less than the Poisson latent

variables distribution because the rates of the neurons can be

parametrized by the marginals. Non-zero values of the parameter

a j1j2...jk indicate the presence of kth order interaction. For

a j1j2...jk ~0 kth order interactions are absent. If, for example all

a j1j2...jk ~0 for kw2, the corresponding probability distribution

includes only parameters of second order, similar to the

multivariate normal distribution. The constraints on the param-

eters a j1 j2...jk , however, constrain the corresponding correlation to

be small in terms of their absolute value.

The Flashlight Transformation and Mixtures of Copulas
We now introduce a novel extension of standard copula

models, which is particularly useful for modeling distributions of

spike-counts. It is based on the orthant dependence concept.

Here, an orthant refers to one of the 2d hypercubes of equal size in

the unit hypercube, i.e. a ‘‘corner’’ of the copula distribution. Let

us consider a distribution with a so-called lower tail dependence

(see Figure 3A), i.e. a distribution, for which the correlation

between spike-counts of two neurons is higher for low values than

for high values. We now introduce the flashlight transformation

which allows to shift the region of high correlation to an arbitrary

orthant (see Figure 3B–D). The whole dependence structure

between spike-counts is rotated accordingly, but remains

unchanged otherwise. The transformation is a function that

operates on CDFs. Yet, it rotates the corresponding PDF, not the

CDF.

The flashlight transformation is specified in the following

theorem (see Text S1 in the supplementary material):

Theorem 2. Let Ca be a d-copula, I : ~ 1, . . . ,df g, S(I ,

PU

T
i[S Uiƒuif g

� �
:~Ca uð Þ a measure, and CF

a ,S uð Þ :~PUT
i[S Uiw1{uif g

� �
\
T

i[S
Uiƒuif g

� �� �
. Then CF

a ,S is a d-copula

and can be expressed as

Table 1. Five commonly used Copula families.

Copula Family Cumulative Distribution Function Ca Constraints

Clayton
max 1{dz

Pd
i~1 u{a

i , 0
n o� 	{1=a a [ 0,?ð Þ

Gumbel-Hougaard
exp {

Pd
i~1 {ln uið Þa

h i1=a
� �

a [ 1,?½ Þ

Frank { 1
a ln 1z Pd

i~1 e{aui {1ð Þ
� �

e{a {1ð Þ1{d
� 	

a [ 0,?ð Þ

Ali-Mikhail-Haq a{1ð Þ



a{Pd
i~1 (1za ui{1ð Þð Þ=ui)

� �
a [ 0,1ð Þ

FGM 1z
Pd

k~2

P
1ƒj1v...vjkƒd a j1 j2 ...jk P

k
i~1 1{uji

� �� 	
Pd

i~1 ui
See caption1

Cumulative distribution functions of five copula families are listed. The parameter d denotes the dimension of the distribution. u1, . . . ,ud [ 0,1½ � are the function arguments.
1Constraints for the Farlie-Gumbel-Morgenstern family: Ve1,e2, . . . ed [ {1,1f g : 1z

Pd
k~2

P
1ƒj1v...vjkƒd a j1 j2 ...jk P

k
i~1 e ji §0:

doi:10.1371/journal.pcbi.1000577.t001

Figure 2. Bivariate copula probability densities of commonly used families. (A) Clayton copula (a~0:22). (B) Gumbel-Hougaard copula
(a~1:11). (C) Frank copula (a~0:91). (D) Ali-Mikhail-Haq copula (a~0:3). (E) Farlie-Gumbel-Morgenstern copula (a~0:45).
doi:10.1371/journal.pcbi.1000577.g002
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CF
a,S uð Þ~

X
A(S

{1ð ÞjAjCa kS,A 1,uð Þ, . . . ,kS,A d,uð Þð Þ, ð1Þ

where S~I\S and kS,A i,uuð Þ~
1{ui ifi [ A,

1 if i [ S\A,

ui if i [ S:

8<:
The flashlight transformation is a generalization of the so-called

survival transformation, which is well known in the economics

literature [17], and which is recovered for S~I . An example is

shown in Figure 3D.

For heterogeneous data more versatile dependence structures

are required. In order to generate this flexibility, one can construct

finite mixtures of copulas each of which is weighted by a

parameter zi [18]. The CDF of mixtures of copulas takes the

following form:

Ca1,...,am
~
Xm

i~1

ziC
i
a i
:

The latent variable zi represents the responsibility of the

corresponding copula Ci
a i

.

Model Fitting
Once a family of marginal distributions and a family of copulas

for describing the dependence structure has been selected, model

parameters have to be estimated from the data, i.e. from the

empirical distribution. Here we suggest a method which is similar

to maximum likelihood estimation.

Theorem 1 provides a method to construct multivariate CDFs

based on copulas. Therefore, the approach yields a CDF of a

multivariate distribution. In order to calculate the likelihood

we have to transform the CDF to a probability mass function

(PMF).

For this purpose we define the sets A~ X1ƒx1, . . . ,Xdƒxdf g
and Ai~ X1ƒx1, . . . ,Xdƒxd ,Xiƒxi{1f g, i [ 1, . . . ,df g. The

probability of a particular set of spike-counts x~ x1, . . . ,xdð Þ can

then be expressed using only the CDF FX , making use of the so-

called inclusion-exclusion principle of Poincaré and Sylvester [19]:

PX xð Þ ~P A\
Sd

i~1

Ai

� �
~P Að Þ{

Pd
k~1

{1ð Þk{1 P
I( 1:...,df g,
jI j~k

P
T
i[I

Ai

� �

~FX xð Þ{
Pd

k~1

{1ð Þk{1 P
m[ 0,1f gd ,P

mi~k

FX x1{m1, . . . ,xd{mdð Þ

~
Pd

k~0

{1ð Þk
P

m[ 0,1f gd ,P
mi~k

FX x1{m1, . . . ,xd{mdð Þ:

ð2Þ

Let

Li hið Þ~
XT

t~1

logPXi
ri,t; hið Þ, i~1, . . . ,d

denote the sum of log likelihoods of the marginal distribution

PXi
xi,t; hið Þ, where hi are the parameters of the chosen family of

marginals. Furthermore, let

L a,h11, . . . ,hddð Þ~
XT

t~1

log PX xt; a,h1, . . . ,hdð Þ

be the log likelihood of the joint probability mass function, where

a denotes the parameter of the chosen copula family. The so-

called inference for margins (IFM) method [20] now proceeds in two

steps. First, the marginal likelihoods are maximized separately:

bhihi~ arg max
hi

LLi hið Þf g:

Then, the full likelihood is maximized given the estimated

marginal parameters:

baa~ argmax
a

L a , bh1h1,:::, bhdhd

� 	n o
:

It was shown that the IFM estimator is asymptotically efficient

[20]. The estimator is computationally more convenient than the

maximum likelihood estimator, because parameter optimization in

low dimensional parameter spaces needs less computation time.

Depending on whether the copula parameters are constrained,

either the Nelder-Mead simplex method for unconstrained

nonlinear optimization [21] or the line-search algorithm for

Figure 3. Probability densities of four different orthant
dependencies generated by the flashlight transformation. The
original distribution was the bivariate Clayton copula (parameter
a~0:22). The transformation takes a set S as a parameter which
contains the indices of the elements that are transformed. (A) Original
Clayton copula, which is also recovered for S~1. (B) Element 1 is
transformed (S~ 1f g). (C) Element 2 is transformed (S~ 2f g). (D) Both
elements are transformed (S~ 1,2f g).
doi:10.1371/journal.pcbi.1000577.g003

Spike-Count Copula Models
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constrained nonlinear optimization [22] can be applied to estimate

the copula parameters using Eqn 2 as the objective function.

For mixtures of copulas, where the values of the latent variables

zi have to be estimated in addition, we suggest to use the

expectation-maximization algorithm [23,24]. In the expectation

step, the weights zi are updated using

ztz1
i ~

1

ntrials

Xntrials

s~1

zt
iP

Ci

X rsja t
i

� �P
j

zt
jP

Cj

X rsja t
j

� 	 ,

where PCi

X is the PMF of the model based on the copula Ci. In the

maximization step the copula parameters a tz1
i are determined for

fixed values of ztz1
i by applying the IFM method. Both steps are

repeated until parameter values converge.

Leaky Integrate-and-Fire Model for Generation of
Synthetic Data

The leaky integrate-and-fire neuron is a simple neuron model

that models only subthreshold membrane potentials. The equation

for the membrane potential is given by

tm
dV

dt
~EL{VzRmIs,

where EL denotes the resting membrane potential, Rm is the total

membrane resistance, Is is the synaptic input current, and tm is the

time constant. The model is completed by a rule which states that

whenever V reaches a threshold Vth, an action potential is fired

and V is reset to Vreset [25]. In all of our simulations we used

tm~20 ms, Rm~20 MV, Vth~{50 mV, EL~Vreset~

{65 mV, and initialized V with {65 mV. These are typical

values that can be found in [25].

Current-based synaptic input for an isolated presynaptic release

that occurs at time t~0 can be modeled by the so-called a-

function [25]:

Is~Imax
t

t s

exp 1{t=t sð Þ:

The function reaches its peak Imax at time t~t s and then

decays with time constant t s. We can model an excitatory synapse

by a positive Imax and an inhibitory synapse by a negative Imax.

We used Imax~500 pA for excitatory synapses, Imax~{500 pA
for inhibitory synapses, and t s~5 ms.

Multi-Tetrode Recordings
Neural activity was recorded from the lateral prefrontal cortex

within an area of 2|2 mm2 located on the ventral bank of the

principal sulcus of an adult female rhesus monkey (macaca mulatta).

Recordings were performed simultaneously from up to 16 adjacent

sites with an array of individually movable fiber micro-tetrodes

(manufactured by Thomas Recording) with an inter-tetrode

distance of 500 micrometers. Data were sampled at 32 kHz and

bandpass filtered between 0:5 kHz and 10 kHz. Recording

positions of individual electrodes were chosen to maximize the

recorded activity and the signal quality. The recorded data were

processed by a principal component analysis-based spike sorting

method. Automatic cluster cutting was manually corrected by

subsequent cluster merging if indicated by quantitative criteria

such as the ISI-histograms or amplitude stability.

Activity was recorded while the monkey performed a visual

working memory task. One out of 20 visual stimuli (fruits and

vegetables) were presented for approximately 650 ms. After a

delay of 3 s, during which the monkey had to memorize the

sample, a test stimulus (‘‘test’’) was presented and the monkey had

to decide by differential button press whether both stimuli were the

same or not. Correct responses were rewarded. Match and non-

match trials were randomly presented with equal probability

(0:50).

Data preprocessing. We selected six neurons with stimulus

specific responses, i.e. those neurons whose firing rate averaged

over the time interval of presentation of the sample stimulus

changed most compared to the pre-stimulus interval baseline. It

turned out that each of these neurons was recorded from a

different tetrode.

Spike trains were analyzed separately for each of the 20
different stimuli and the four trial intervals: pre-stimulus, sample

stimulus presentation, delay, and test stimulus presentation. Spike

trains were binned into successive 100 ms intervals and converted

into six dimensional spike-counts for each bin. Due to the different

interval lengths, the total sample size per condition varied between

224 and 1793. A representative example of the empirical

distribution of a pair of these counts is presented in Figure 1A.

Estimation of Mutual Information
The mutual information between spike-counts X and stimuli is

given by

I X; Sð Þ~
X
s[MS

PS sð Þ
X
x[Nd

PX x jsð Þ log2

PX xjsð ÞP
s’[MS

PS s’ð ÞPX xjs’ð Þ

0B@
1CA, ð3Þ

where MS is the set of stimuli, PS is the probability distribution

over the stimuli, and PX x jsð Þ is the likelihood of a neural response

x given a stimulus s. For higher dimensions d the sum over x[Nd

prohibits an exact computation of I X; Sð Þ, since the number of

terms of the sum grows exponentially with d. The evaluation of

this sum is therefore practically infeasible unless the number of

neurons is very small. However, we can estimate the mutual

information using Monte Carlo sampling. For each of the stimuli

s, we can estimate the second sum by drawing samples x i with

probability PX xijsð Þ. The term

1

k

Xk

i~1

log2

PX xijsð ÞP
s’[MS

PS s’ð ÞPX xijs’ð Þ

0B@
1CA

will then converge to the second sum in Eqn 3, as k approaches

infinity [26].

Results

Reliability of Model Estimation
Typically the number of samples that can be obtained in

electro-physiological experiments is small. Thus, it might appear to

be hopeless to estimate a multidimensional model with a detailed

dependence structure. However, since our marginal distributions

are discrete the copula matters only at a small number of points. In

the following, we will demonstrate that it is not always necessary to

obtain a great number of samples for a reliable model estimation.

For this purpose we selected the Clayton-copula model with

negative binomial marginals as a ground truth model which was

Spike-Count Copula Models
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used to draw samples. We calculated the deviation of the log

likelihood of the estimated model from the log likelihood of the

ground truth model in percent of the ground truth log likelihood.

The correlation strength of the ground truth model was varied by

the Clayton parameter. The results are shown in Figure 4 for three

different Clayton parameters of the ground truth model. For

moderate dependence strengths (as are typically found in the data)

400 samples were sufficient for estimations of the log likelihood

with an error of less than 0:5%.

Application of Copula-Based Models to Synthetic Data
One cause for dependence between spike-counts of different

neurons are common input populations. Therefore, we investigat-

ed network models with different types of common input. We set

up two current based leaky integrate-and-fire neurons (see Section

‘‘Materials and Methods’’) and three input populations modeled as

Poisson spike generators. The left input population projected only

to neuron 1 and the right input population projected only to

neuron 2. The center input population was the common input

population, projecting to both neuron 1 and neuron 2. We

investigated all four combinations of excitatory (E) and inhibitory

(I) projections from the common population to the two neurons

(see Figure 5A1–A4).

In this network model a lower tail dependence should arise if the

projections from the common input projection are mostly

inhibitory: each time the common population is active the firing

rates of both neurons will decrease simultaneously. Therefore, only

low spike-counts should be strongly correlated and the Clayton

family should provide a good fit to the responses of such a network.

Similarly, two excitatory projections should result in an upper tail

dependence and other combinations should become apparent as

dependence blobs in other corners of the probability density

function of the copula. The flashlight transformation shifts the

dependence blob of a given copula with orthant dependence into

other orthants of the probability density function and is thus capable

of modeling different types of common input populations in a

stochastic manner. For two neurons, the lower left corner models an

inhibitory input population, the upper right corner models an

excitatory input population, and the other corners model a

combination of excitatory and inhibitory input populations.

The spike trains of the two neurons were binned into 100 ms
intervals. We applied copula-based models with negative binomial

marginals to fit the generated data from the four models using the

IFM method (see Section ‘‘Model Fitting’’). Four different copula

families were applied: the unmodified bivariate Clayton family and

the three remaining flashlight transformations of the Clayton

family (Figure 3). Figure 5C1–C4 shows the log likelihoods of the

fits for the corresponding networks as shown in Figure 5A1–A4.

The respective model performed best for the combination of

projection types of the common input population it was supposed

to model, i.e. Clayton for I-I, Clayton survival for E-E, etc. Hence,

by determining the best fitting transformation the most likely

combination of input types could be identified. Each of the

transformations could be associated with a distinct combination of

projection types.

To investigate whether the results of the reconstruction depend

on the strengths of the synapses we varied Imax between 100 pA and

1000 pA for excitatory synapses and between {1000 pA and

{100 pA for inhibitory synapses (data not shown). While the

relation of the best fitting copula families was constant across all

strengths the differences between the curves decreased for

decreasing strengths. For 100 pA it was hard to distinguish between

the likelihoods of lower and upper tail dependencies. Therefore, tail

dependencies were less pronounced in the spike-counts. In the

multi-tetrode data, however, we found significant differences

between the likelihoods of the copula families (see Section

‘‘Application of Copula-Based Models to Multi-Tetrode Data’’).

To investigate the impact of the bin size on the reconstruction

performance we also binned the data into smaller and larger

intervals (data not shown). When the bin size was too small or too

large (10 ms and 500 ms) the reconstruction did not succeed. In

the intermediate range (50 ms, 100 ms), however, the connection

types could be reconstructed. This can be explained by the

asymptotic distributions of the multivariate spike-counts. Accord-

ing to the central limit theorem the multivariate normal distribution

provides a good approximation when the bin size is sufficiently

large. Hence, tail dependencies will vanish. On the contrary, when

the bin size becomes too small the marginal distributions are

essentially Bernoulli distributed and the tail dependencies will

vanish as well. Of course, the range of the intermediate bin size

depends on the rates of the neurons. The larger the rates the

smaller the bin sizes in the intermediate range. For the simulated

data the rates were comparable to the data recorded from the

prefrontal cortex (see Section ‘‘Multi-Tetrode Recordings’’).

Figure 4. Deviation of the estimated likelihood from the likelihood for different dependence strengths. The deviation is given in
percent of the likelihood. Samples were drawn from a Clayton-copula model with negative binomial marginals. The marginals were parametrized by
maximum likelihood estimates obtained on the entire data that is described in Section ‘‘Multi-Tetrode Recordings’’. The vertical axis indicates the
number of samples in the training set. The evaluation took place on a separate set of 500 samples. Above the black line the deviation is smaller than
0:5%. (A) Correlation coefficient r~0:1. (B) Correlation coefficient r~0:5. (C) Correlation coefficient r~0:9.
doi:10.1371/journal.pcbi.1000577.g004
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Application of Copula-Based Models to Multi-Tetrode
Data

Our copula-based models are capable of modeling different

dependence structures with marginals that are tailored to single

neuron spike-count distributions. Thus, we expected that the

copula-based models would provide a much better fit to data

recorded from real neurons than the multivariate normal

distribution or the multivariate Poisson latent variables distribu-

tion. To test this, we applied copula-based models from different

families and with different marginal distributions to data, which

has been recorded from macaque prefrontal cortex for each of the

twenty presented stimuli and each of the four phases (pre-stimulus

presentation, stimulus presentation, delay, presentation of the test

stimulus) of the visual working memory task. We compared the

results to models of the discretized multivariate normal and the

Poisson latent variables distribution (see Section ‘‘Materials and

Methods’’)

We randomly selected 50 count vectors for each task phase and

each stimulus as the validation set. We then estimated the model

parameters on the remaining count vectors (training set) and used

the validation set for obtaining an unbiased estimate of the

likelihoods of the selected models.

We used the IFM-estimator for the copula-based models and

the maximum likelihood estimator for the Poisson latent variables

distribution. The parameters m and S of the discretized MVN

distribution were estimated by the sample mean and the sample

covariance matrix of the spike-counts. This procedure does not

correspond to the maximum likelihood estimate of the discretized

Figure 5. Copula-based analysis of bivariate spike-count data. (A1–A4) Neural network models used to generate the synthetic spike-count
data. Two leaky integrate-and-fire neurons (‘‘LIF1’’ and ‘‘LIF2’’, see Section ‘‘Materials and Methods’’) receive spike inputs from three separate
populations of neurons (rectangular boxes and circles), but only one population sends input to both of the neurons. All input spike trains were
Poisson-distributed. Each neuron had a total inhibitory input rate of 600 Hz. We had three times as many excitatory spikes as inhibitory spikes. We
increased the absolute correlation between the spike-counts by shifting the rate of the left and right populations to the center population. The center
population was active in half the simulation time. The total simulation time amounted to 100 s. Spike-counts were calculated for 100 ms bins. (B)
Empirical distribution for the model with an inhibitory input population (see A3) obtained for 100 ms bins and a correlation coefficient of 0:55. (C1–
C4) Log likelihoods of the best fitting Clayton copulas with negative binomial marginals as a function of the strength of the input correlation. Plots
shown (C1 ? C4) correspond to the four different network models (A1 ? A4). Dotted, dashed, solid, and dashed-dotted lines correspond to the best
fitting Clayton copula with lower, lower-right, upper-left, and upper orthant dependence (see Figure 3). Copulas were fitted using the IFM estimators.
doi:10.1371/journal.pcbi.1000577.g005
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distribution. We used it, because the maximum likelihood

estimator was too expensive to compute for six neurons. The

high computational costs come from the estimation of the CDF of

the MVN.

The rate parameter li for the Poisson distribution and negative

binomial distribution were estimated via the sample mean. The

maximum likelihood estimates for the overdispersion parameter ui

were computed iteratively by Newton’s method.

Figure 6A summarizes the results for the discretized MVN, the

Poisson latent variables distribution, and two copula-based

distributions with different marginals, the Poisson distribution,

and the negative binomial distribution. The negative binomial

distribution provided for all four task phases a significantly better

fit than the Poisson distribution, the MVN distribution, and the

Poisson latent variables distribution. The likelihood for the copula-

based models was significantly greater than for the discretized

MVN model (p~2:10{14, paired-sample Student’s t test over

stimuli) and the Poisson latent variables model (p~1:10{5).

Moreover, the likelihood for the negative binomial marginals was

even greater than that for the Poisson marginals (p~0:0003).

Thus, the copula-based approach provided models that were

indeed superior for the data at hand. Moreover, the additional

flexibility of the negative binomial marginals improved the fit

significantly.

We applied different copula families to examine the importance

of the dependence structure for the model fit. Figure 6B shows an

evaluation of the different copula families with different depen-

dence structures for the best fitting marginal, which was the

negative binomial distribution. The model based on the Clayton

copula family provided the best fit. The fit was significantly better

than for the second best fitting copula family (p~0:0014), the

Gumbel family. In spite of having more parameters, the FGM

copulas performed worse. However, the FGM model with third

order interactions fitted the data significantly better than the

model that included only pairwise interactions (p~0:0437).

The best fitting copula-based model, the Clayton copula, is

characterized by a lower tail dependence. Apart of the Gumbel

family, the other families that we applied so far do not model

orthant dependencies. To check whether other orthant depen-

dencies would improve the fit, we applied the flashlight

transformation and we transformed the Clayton copula tail

towards all corners of the six dimensional hyper cube. The results

are shown in Figure 7. The standard Clayton copula with lower

tail dependence had the significantly highest value of the log

likelihood on the validation set indicating that the empirical spike-

count distribution has indeed a lower tail dependence. The second

highest peak was reached by the Clayton survival copula. The

central peak corresponded to those transformations that were close

to the Clayton and the Clayton survival copulas: sectors 011111
and 100000 (31 and 32 decimal). Thus, a common lower tail

dependence was prominent in the data.

We applied mixtures of copulas as described in Section ‘‘The

Flashlight Transformation and Mixtures of Copulas’’ to check

whether there was indeed a prominent common upper tail

dependence beside the lower tail dependence in the data.

Therefore, we fixed the Clayton copula (which models a lower

tail dependence) as the first mixture component and varied the

sector of the flashlight transformed Clayton copula for the second

mixture component. Figure 7C shows the mean log likelihoods of

the mixture models with negative binomial marginals on the same

data set used for Figure 7B. All of the mixture models exhibit

similar performance. Therefore, the upper tail dependence that we

observed for the unmixed model appears to be an artifact of the

lower tail dependence.

In summary, we could show that the copula-based approach

provided a significant improvement in the goodness of fit

compared to the discretized and rectified multivariate normal

distribution and the Poisson latent variables distribution. More-

over, the dependence structure alone has a significant impact as

well.

Appropriateness of Model
Our model consists of two parts: 1) the copula and 2) the

marginals. We already analyzed the effect of the copula. In this

section we describe the investigation of the marginals. In

particular, we are interested in understanding how the goodness

of fit is influenced by the marginals. For this purpose we compared

the log likelihoods of the Clayton-copula model with Poisson,

negative binomial, and empirical marginals fitted to the training

set of the sample stimulus presentation phase. The model with

empirical marginals was a so-called semiparametric distribution

Figure 6. Log likelihoods of the best fitting MVN, Poisson
latent variables, and copula-based models for the validation
set. (A) Log likelihoods for the discretized multivariate normal
distribution (circles), the multivariate Poisson latent variables distribu-
tion (crosses), the best fitting copula-based model with Poisson
(squares), and with negative binomial marginals (diamonds). The figure
shows the log likelihoods averaged over all 20 different stimuli, but
separately for the pre-stimulus, sample stimulus, delay, and test
stimulus phase of the memory task. For the best fitting copula, we
considered all the copula families shown in B. AMH denotes the Ali-
Mikhail-Haq family, FGM the Farlie-Gumbel-Morgenstern family (see
Table 1). For the 2nd order model of the FGM family we set all but the

first
d

2

� �
parameters to zero, therefore leaving only parameters for

pairwise interactions. In contrast, for the 3rd order model we set all but

the first
d

2

� �
z

d

3

� �
parameters to zero. (B) Difference between the

log likelihood of a model with independent spike-counts and negative

binomial marginals (‘‘ind. model’’) and the log likelihoods of the best

fitting representatives of the different copula-based models shown in

the legend. Negative binomial marginals were used. Data was again

averaged over the 20 different stimuli.
doi:10.1371/journal.pcbi.1000577.g006
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consisting of a parametric dependence structure (the copula

family) and nonparametric marginals. We drew samples from

these distributions in order to learn whether the training and

validation sets were typical samples from the fitted distributions.

For a complex model we expect the likelihood of training samples

to be close to the mode of the histogram, while we expect the

validation samples to have a much smaller likelihood. Contrary,

for a model with small complexity we expect the likelihood of the

training samples to be close to the likelihood of the validation

samples. When the complexity is too small we expect the

likelihoods of the training and the validation samples to be much

smaller than the mode of the histogram.

In our setting the most complex model is the one with empirical

marginals. Histograms of the log likelihoods for copula models

with the three different marginals are shown in Figure 8. For

Poisson marginals, the log likelihoods of both the training set and

the validation set were much smaller than the log likelihoods of the

samples drawn from the fitted distribution. Thus, the Poisson

marginals seem to be too simple for a good fit to the data, whereas

the negative binomial marginals generalized well in spite of their

increased complexity. On the training set the model with the

empirical marginals performed best. However, there was a huge

discrepancy to the likelihood of the model with empirical

marginals on the validation set, whereas the likelihoods of the

other two models did not change much. This result can be

explained by overfitting. The empirical marginals matched the

marginals of the training set perfectly. The empirical marginals of

the training set, however, were noisy representations of the true

marginals, because of the limited sample size. Hence, a perfect fit

is not beneficial when it comes to novel data. In contrast to that,

the likelihoods of the models with Poisson and negative binomial

marginals were almost equal to the respective likelihoods on the

training set. Thus, these models did not suffer from overfitting.

In order to relate these findings to the number of samples in our

training set we can compare the number of samples to the estimated

number of required samples for the toy example in Section ‘‘Model

Fitting’’. Figure 6 shows that the log likelihood for the Clayton-copula

model deviated from the second best family by 3=600~0:5%. In

Section ‘‘Model Fitting’’ we showed that for this model 400 samples

were sufficient for good estimations of the log likelihood. For the delay

phase and for the test stimulus phase, the number of samples varied

between 451 and 1743 per stimulus. Therefore, the number of

samples was sufficient for these phases. Taken together with the

histogram analysis, we found that the model complexity was

appropriate for the available amount of data at hand.

Information Analysis
We will now show that the copula-based models can be used to

measure the short-term information about a stimulus that is encoded

by the spike-count dependence structure of the recorded neurons.

The first step is to estimate the total information of the spike-count

responses. We applied the best fitting copula model, the Clayton-

copula model with negative binomial marginals, to estimate the

mutual information between stimuli and responses via Monte Carlo

sampling (see Section ‘‘Materials and Methods’’). Figure 9A shows

the estimated mutual information for each of the four task phases.

The mutual information was greater during the sample stimulus

interval and the test stimulus interval than during the delay interval.

Therefore, a stimulus presentation evoked a spike-count response

which instantly encoded information about the stimulus. In the test

stimulus phase the dotted line is above the dashed line, so the spike-

counts coded more information about the sample stimulus that was

previously presented than about the test stimulus.

Figure 9B shows the information estimate DIshuffled~I{Ishuffled ,

normalized to the mutual information I that is shown in Figure 9A.

The dependence structure carried between 6% and 12% of the

mutual information. During the test stimulus interval the depen-

dence structure encoded almost twice as much information about

the test stimulus as about the sample stimulus that was previously

presented.

Discussion

We developed a framework for analyzing the noise dependence

of spike-counts and used synthetic data from a model of leaky

integrate-and-fire neurons to derive interpretations for different

dependence structures. Applying the framework to our data from

the macaque prefrontal cortex we found that: (1) copula-based

models with negative binomial marginals rather than the

multivariate normal distribution or the Poisson latent variables

distribution are appropriate models of spike-count data for short

time intervals; (2) the dependence structure encodes between 6%

Figure 7. Log likelihoods of different Clayton-copula models transformed using the flashlight transformation. (A) Cartoon indicating
the labeling of orthants for the six dimensional space. Each number indicates the orthant, into which the originally lower tail dependence was
transformed. (B) Mean log likelihoods on the test interval validation set for all possible flashlight transformed Clayton copulas and negative binomial
marginals. The bars mark the standard errors. (C) Mean log likelihoods on the test interval validation set for a mixture of the Clayton copula with all
possible flashlight transformed Clayton copulas and negative binomial marginals.
doi:10.1371/journal.pcbi.1000577.g007
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and 12% of the mutual information about the presented stimuli; (3)

the amount of data required for a good likelihood estimation is

present in our data set; and (4) a lower tail dependence between all

neurons is present in the data and can be explained by common

inhibitory input.

The copula approach has many advantages compared to previous

models. Recently, the Ising model gained a lot of attention in

neuroscience [4,27]. This model is a maximum entropy model of

binary variables called spins that have only pairwise interactions [28].

The model is applied to the neuroscience setting by binning spike trains

into very short time intervals such that at most one spike falls into each

bin. The spin for that bin then indicates whether or not a spike was

present. Using this model pairwise interactions between simultaneously

recorded neurons can be modeled [4]. The Ising model is a special case

of a more general class of nested maximum entropy models [29]. Other

models in this class can be used to model higher order interactions

between neurons. Nevertheless, an independence assumption for

subsequent bins is necessary due to the limited number of samples

present in typical neuroscience settings. Therefore, the marginal spike-

counts of individual neurons will be binomial distributed. The variance

of this distribution is always smaller than its mean which is a severe

disadvantage of this model class. The copula approach on the other

hand can model arbitrary marginals.

Another class of models are doubly stochastic models where

some parameters of the data distribution are themselves random

variables. The doubly stochastic Poisson point process presented

by Krumin and Shoham belongs to this class [30]. For such

models the marginal distributions change whenever the depen-

dence is modified. It is thus very hard to disentangle the effects of

the dependence structure from the effects of the marginals.

In contrast to the multivariate normal distribution and the

multivariate Poisson latent variables distribution the copula

Figure 8. Distribution of log likelihoods from models fitted to
data from the sample stimulus phase. The Clayton-copula model
with different marginals was used. A histogram of 100 samples is shown
where each sample represents an average over 50 spike-count vectors.
The solid line corresponds to the log likelihood of the training set
whereas the dashed line corresponds to the log likelihood of the
validation set. (A) Model with Poisson marginals. (B) Model with
negative binomial marginals. (C) Model with empirical marginals.
doi:10.1371/journal.pcbi.1000577.g008

Figure 9. Monte Carlo estimates of the mutual information
between stimuli and responses. The estimation is based on the
Clayton-copula model with negative binomial marginals. The Monte
Carlo method was terminated when the standard error was below
5:10{4. The sample stimulus was presented in phase two, whereas the
test stimulus was presented in phase four. For the test stimulus phase,
the estimation was performed twice: for the sample stimulus that was
previously presented (dashed line) and for the test stimulus (dotted
line). (A) Estimated mutual information based on IFM parameters
determined on the training set for each of the task phases (pre-
stimulus, sample stimulus, delay, and test stimulus). (B) Estimated
information increase that is due to the dependence structure. The
mutual information Ishuffled of the model with independent spike-counts
and negative binomial marginals was subtracted from and normalized
to the mutual information I of the Clayton-copula model with negative
binomial marginals.
doi:10.1371/journal.pcbi.1000577.g009
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approach can be used to model arbitrary marginal distributions

that are appropriate for the data at hand. The marginal

distributions can therefore be discrete without any mass on the

negative axis and with variance greater than the mean. We

compared the fits of negative binomial marginals to Poisson and

empirical marginals and found that only the negative binomial

marginals provided a reasonable fit to the data. Contrary to the

Poisson marginals, the negative binomial marginals were complex

enough such that likelihoods of samples from the model were

consistent with the likelihood of the data. Moreover, the negative

binomial marginals did not suffer from overfitting as did the

empirical marginals. We conclude that the negative binomial

marginals are appropriate to describe the spike-counts recorded

from the prefrontal cortex.

The dependence structure of the copula approach is flexible.

Higher order interactions can be parametrized separately if

desired. Furthermore, in contrast to the multivariate Poisson

latent variables distribution, negative correlations can be modeled

as well. Another advantage of the copula approach is that it is

modular in the sense that the copula family used for the data

analysis can be easily exchanged by another family. Many different

copula families exist, each representing and parameterizing

different properties of the dependence structures. Thus, it is easy

to test for different properties of a distribution. Specific examples

are the Clayton and Gumbel families. These families have lower

and upper tail dependencies, respectively. Lower and upper tail

dependencies can arise from common input populations with

inhibitory and excitatory projections, respectively. By deriving the

flashlight transformation we could construct additional families

that account for combinations of inhibition and excitation.

When applying the flashlight transformation to the data from the

prefrontal cortex, we found that the unmodified Clayton family

provided the best fit to the test data. Therefore, a common lower tail

dependence to all neurons is present in the data. One explanation is a

common input population whose projections are mostly inhibitory to

all the analyzed neurons. Two types of common inhibitory sources

are possible: (1) A local source of inhibitory input such as common

interneurons. (2) Another area projecting to the prefrontal cortex. It

was found that interneurons have a reach of no more than a few

hundred micrometers whereas the inter-tetrode distance was

500 micrometers. Thus, it is unlikely that a population of common

interneurons inhibits all the stimulus specific neurons that we

recorded from. Another area, therefore, is more likely to be the

source of the common inhibitory input. One possibility could be the

ventral tegmental area (VTA). In the rat cortex it was found that the

VTA exerts a direct inhibitory influence on the PFC. In a study 77%
of 225 recorded PFC neurons were inhibited as a result of VTA

stimulation [31]. Moreover, the VTA is thought to be a central

component of the reward system [32] which is essential for a memory

task. Our analysis provides evidence for such an influence based on

the spike-count statistics.

The second best fit was achieved by the Clayton survival family.

One explanation for this result is provided by an upper tail

dependence between all neurons in addition to the stronger lower

tail dependence. We applied mixtures of copulas to elucidate this

issue and found that a mixture of the Clayton and Clayton survival

family did not provide the best fit out of all mixtures of the Clayton

family with a Clayton flashlight transformation. At first sight it is

puzzling that the upper tail dependence seems to disappear when

mixed with the lower tail dependence. However, the Clayton

copula and the Clayton survival copula have their dependence

along the same line in the six dimensional space that is spanned by

the neuronal spike-counts, though predominantly at different ends

of this line. Hence, the Clayton survival family can capture some

of the dependence that is inherent to the Clayton family. We

conclude that the prominence of the upper tail dependence that

was observed for the unmixed model is an artifact of the lower tail

dependence component.

The results show that important properties of dependence

structures such as tail dependencies arise very naturally in simple

input scenarios, and that the copula approach can be used to

construct generative models that are capable of capturing these

aspects of this underlying connectivity. In principle, copula-based

models can be used to guide reconstructions of functional

connectivity, but this topic is outside the scope of this study. If the

reader is interested in detailed reconstruction of functional

connectivity we recommend the studies in [33–35] as a starting point.

We could show that there is important information represented

in the dependence structure which has been ignored in studies

reporting only the correlation coefficient. Based on the flashlight

transformation we could derive novel copula families with

interesting interpretations for neuroscience: the statistical depen-

dence gives insight into possible connections of the underlying

network. Other copula families might be applicable to investigate

different properties of the network.

We could also show that the Gaussian distribution is not an

appropriate approximation of the spike-count distribution of short

time intervals. Yet, many studies applied this approximation in

their investigations. Therefore, these studies should be reassessed

with respect to their validity for short-term coding.

We also compared the copula-based approach to the multivar-

iate Poisson latent variables distribution. In terms of spike-counts

this model corresponds to previous point process models that

account for higher order correlations. The copula-based approach

overcomes a number of shortcomings of this distribution, namely

the Poisson marginals, the restriction to non-negative correlations

and the inflexible dependence structure. We could show that the

improvement in the goodness-of-fit is significant.

Taken together, the copula-based approach allows us to model

and analyze spike-count dependencies in much more detail than

previously applied models. A drawback is the small number of

neurons to which the approach can be applied so far. The

approach is computationally too demanding for higher numbers of

neurons because the model fitting complexity is exponential in the

number of neurons. Approximate inference methods might

provide a solution to the computational problem. However,

another problem is the number of samples available in typical

electro-physiological experiments. We could show that 400
samples are sufficient for six dimensional data with moderate

dependence strengths. Nevertheless, the amount of required data

increases dramatically for increasing dimensions, i.e. for the

number of neurons. A combination with dimensionality reduction

techniques might provide a solution to this problem.

Supporting Information

Text S1 Proof of the theorem that introduces the flashlight

transformation for copula families.

Found at: doi:10.1371/journal.pcbi.1000577.s001 (0.08 MB PDF)
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