256 research outputs found

    A whole genome screen for association with multiple sclerosis in portuguese patients

    Get PDF
    Multiple sclerosis (MS) is common in Europe affecting up to 1:500 people. In an effort to identify genes influencing susceptibility to the disease, we have performed a population-based whole genome screen for association. In this study, 6000 microsatellite markers were typed in separately pooled DNA samples from MS patients (n = 188) and matched controls (n = 188). Interpretable data was obtained from 4661 of these markers. Refining analysis of the most promising markers identified 10 showing potential evidence for association.SERONO (Portugal).Fundação para a Ciência e a Tecnologia (FCT) - grant FRH/BD/9111/2002.British Council/ICCTI.Wellcome Trust, Multiple Sclerosis Societies of the United States and Great Britain, Multiple Sclerosis International Federation - GAMES project - grant 057097

    High-Density SNP Mapping of the HLA Region Identifies Multiple Independent Susceptibility Loci Associated with Selective IgA Deficiency

    Get PDF
    Selective IgA deficiency (IgAD; serum IgA<0.07 g/l) is the most common form of human primary immune deficiency, affecting approximately 1∶600 individuals in populations of Northern European ancestry. The polygenic nature of IgAD is underscored by the recent identification of several new risk genes in a genome-wide association study. Among the characterized susceptibility loci, the association with specific HLA haplotypes represents the major genetic risk factor for IgAD. Despite the robust association, the nature and location of the causal variants in the HLA region remains unknown. To better characterize the association signal in this region, we performed a high-density SNP mapping of the HLA locus and imputed the genotypes of common HLA-B, -DRB1, and -DQB1 alleles in a combined sample of 772 IgAD patients and 1,976 matched controls from 3 independent European populations. We confirmed the complex nature of the association with the HLA locus, which is the result of multiple effects spanning the entire HLA region. The primary association signal mapped to the HLA-DQB1*02 allele in the HLA Class II region (combined P = 7.69×10−57; OR = 2.80) resulting from the combined independent effects of the HLA-B*0801-DRB1*0301-DQB1*02 and -DRB1*0701-DQB1*02 haplotypes, while additional secondary signals were associated with the DRB1*0102 (combined P = 5.86×10−17; OR = 4.28) and the DRB1*1501 (combined P = 2.24×10−35; OR = 0.13) alleles. Despite the strong population-specific frequencies of HLA alleles, we found a remarkable conservation of these effects regardless of the ethnic background, which supports the use of large multi-ethnic populations to characterize shared genetic association signals in the HLA region. We also provide evidence for the location of association signals within the specific extended haplotypes, which will guide future sequencing studies aimed at characterizing the precise functional variants contributing to disease pathogenesis

    HLA-A Confers an HLA-DRB1 Independent Influence on the Risk of Multiple Sclerosis

    Get PDF
    A recent high-density linkage screen confirmed that the HLA complex contains the strongest genetic factor for the risk of multiple sclerosis (MS). In parallel, a linkage disequilibrium analysis using 650 single nucleotide polymorphisms (SNP) markers of the HLA complex mapped the entire genetic effect to the HLA-DR-DQ subregion, reflected by the well-established risk haplotype HLA-DRB1*15,DQB1*06. Contrary to this, in a cohort of 1,084 MS patients and 1,347 controls, we show that the HLA-A gene confers an HLA-DRB1 independent influence on the risk of MS (P = 8.4×10−10). This supports the opposing view, that genes in the HLA class I region indeed exert an additional influence on the risk of MS, and confirms that the class I allele HLA-A*02 is negatively associated with the risk of MS (OR = 0.63, P = 7×10−12) not explained by linkage disequilibrium with class II. The combination of HLA-A and HLA-DRB1 alleles, as represented by HLA-A*02 and HLA-DRB1*15, was found to influence the risk of MS 23-fold. These findings imply complex autoimmune mechanisms involving both the regulatory and the effector arms of the immune system in the triggering of MS

    Different HLA-DRB1 allele distributions in distinct clinical subgroups of sarcoidosis patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A strong genetic influence by the MHC class II region has been reported in sarcoidosis, however in many studies with different results. This may possibly be caused by actual differences between distinct ethnic groups, too small sample sizes, or because of lack of accurate clinical subgrouping.</p> <p>Subjects and methods</p> <p>In this study we HLA typed a large patient population (n = 754) recruited from one single centre. Patients were sub-grouped into those with Löfgren's syndrome (LS) (n = 302) and those without (non-Löfgren's) (n = 452), and the majority of them were clinically classified into those with recovery within two years (resolving) and those with signs of disease for more than two years (non-resolving). PCR was used for determination of HLA-DRB1 alleles. Swedish healthy blood donors (n = 1366) served as controls.</p> <p>Results</p> <p>There was a dramatic difference in the distribution of HLA alleles in LS compared to non-LS patients (p = 4 × 10<sup>-36</sup>). Most notably, DRB1*01, DRB1*03 and DRB1*14, clearly differed in LS and non-LS patients. In relation to disease course, DRB1*07, DRB1*14 and DRB1*15 generally associated with, while DRB1*01 and DRB1*03 protected against, a non-resolving disease. Interestingly, the clinical influence of DRB1*03 (good prognosis) dominated over that of DRB1*15 (bad prognosis).</p> <p>Conclusions</p> <p>We found several significant differences between LS and non-LS patients and we therefore suggest that genetic association studies in sarcoidosis should include a careful clinical characterisation and sub-grouping of patients, in order to reveal true genetic associations. This may be particularly accurate to do in the heterogeneous non-LS group of patients.</p

    An extension to a statistical approach for family based association studies provides insights into genetic risk factors for multiple sclerosis in the HLA-DRB1 gene

    Get PDF
    Background: Multiple sclerosis (MS) is a complex trait in which genes in the MHC class II region exert the single strongest effect on genetic susceptibility. The principal MHC class II haplotype that increases MS risk in individuals of Northern European descent are those that bear HLA-DRB1*15. However, several other HLA-DRB1 alleles have been positively and negatively associated with MS and each of the main allelotypes is composed of many sub-allelotypes with slightly different sequence composition. Given the role of this locus in antigen presentation it has been suggested that variations in the peptide binding site of the allele may underlie allelic variation in disease risk. Methods: In an investigation of 7,333 individuals from 1,352 MS families, we assessed the nucleotide sequence of HLA-DRB1 for any effects on disease susceptibility extending a recently published method of statistical analysis for family-based association studies to the particular challenges of hyper-variable genetic regions. Results: We found that amino acid 60 of the HLA-DRB1 peptide sequence, which had previously been postulated based on structural features, is unlikely to play a major role. Instead, empirical evidence based on sequence information suggests that MS susceptibility arises primarily from amino acid 13. Conclusion: Identifying a single amino acid as a major risk factor provides major practical implications for risk and for the exploration of mechanisms, although the mechanism of amino acid 13 in the HLA-DRB1 sequence's involvement in MS as well as the identity of additional variants on MHC haplotypes that influence risk need to be uncovered

    Loitering with intent: dealing with human-intensive systems

    Get PDF
    This paper discusses the professional roles of information systems analysts and users, focusing on a perspective of human intensive, rather than software intensive information systems. The concept of ‘meaningful use’ is discussed in re-lation to measures of success/failure in IS development. The authors consider how a number of different aspects of reductionism may distort analyses, so that processes of inquiry cannot support organizational actors to explore and shape their requirements in relation to meaningful use. Approaches which attempt to simplify complex problem spaces, to render them more susceptible to ‘solution’ are problematized. Alternative perspectives which attempt a systematic, holistic complexification, by supporting contextual dependencies to emerge, are advocated as a way forward

    HLA Genes, Islet Autoantibodies and Residual C-Peptide at the Clinical Onset of Type 1 Diabetes Mellitus and the Risk of Retinopathy 15 Years Later

    Get PDF
    HLA genes, islet autoantibodies and residual C-peptide were studied to determine the independent association of each exposure with diabetic retinopathy (DR), 15 years after the clinical onset of type 1 diabetes in 15-34 year old individuals.The cohort was identified in 1992 and 1993 by the Diabetes Incidence Study in Sweden (DISS), which investigates incident cases of diabetes for patients between 15 and 34 years of age. Blood samples at diagnosis were analyzed to determine HLA genotype, islet autoantibodies and serum C-peptide. In 2009, fundus photographs were obtained from patient records. Study measures were supplemented with data from the Swedish National Diabetes Registry.The prevalence of DR was 60.2% (148/246). Autoantibodies against the 65 kD isoform of glutamate decarboxylase (GADA) at the onset of clinical diabetes increased the risk of DR 15 years later, relative risk 1.12 for each 100 WHO units/ml, [95% CI 1.02 to 1.23]. This equates to risk estimates of 1.27, [95% CI 1.04 to 1.62] and 1.43, [95% CI 1.06 to 1.94] for participants in the highest 25(th) (GADA>233 WHO units/ml) and 5(th) percentile (GADA>319 WHO units/ml) of GADA, respectively. These were adjusted for duration of diabetes, HbA(1c), treated hypertension, sex, age at diagnosis, HLA and C-peptide. Islet cell autoantibodies, insulinoma-antigen 2 autoantibodies, residual C-peptide and the type 1 diabetes associated haplotypes DQ2, DQ8 and DQ6 were not associated with DR.Increased levels of GADA at the onset of type 1 diabetes were associated with DR 15 years later. These results, if confirmed, could provide additional insights into the pathogenesis of the most common microvascular complication of diabetes and lead to better risk stratification for both patient screenings and DR treatment trials

    A Functional Variant in ERAP1 Predisposes to Multiple Sclerosis

    Get PDF
    The ERAP1 gene encodes an aminopeptidase involved in antigen processing. A functional polymorphism in the gene (rs30187, Arg528Lys) associates with susceptibility to ankylosying spondylitis (AS), whereas a SNP in the interacting ERAP2 gene increases susceptibility to another inflammatory autoimmune disorder, Crohn's disease (CD). We analysed rs30187 in 572 Italian patients with CD and in 517 subjects suffering from multiple sclerosis (MS); for each cohort, an independent sex- and age-matched control group was genotyped. The frequency of the 528Arg allele was significantly higher in both disease cohorts compared to the respective control population (for CD, OR = 1.20 95%CI: 1.01–1.43, p = 0.036; for RRMS, OR = 1.26; 95%CI: 1.04–1.51, p = 0.01). Meta-analysis with the Wellcome Trust Cases Control Consortium GWAS data confirmed the association with MS (pmeta = 0.005), but not with CD. In AS, the rs30187 variant has a predisposing effect only in an HLA-B27 allelic background. It remains to be evaluated whether interaction between ERAP1 and distinct HLA class I alleles also affects the predisposition to MS, and explains the failure to provide definitive evidence for a role of rs30187 in CD. Results herein support the emerging concept that a subset of master-regulatory genes underlay the pathogenesis of autoimmunity
    corecore