252 research outputs found
Local energy balance, specific heats and the Oberbeck-Boussinesq approximation
A thermodynamic argument is proposed in order to discuss the most appropriate
form of the local energy balance equation within the Oberbeck-Boussinesq
approximation. The study is devoted to establish the correct thermodynamic
property to be used in order to express the relationship between the change of
internal energy and the temperature change. It is noted that, if the fluid is a
perfect gas, this property must be identified with the specific heat at
constant volume. If the fluid is a liquid, a definitely reliable approximation
identifies this thermodynamic property with the specific heat at constant
pressure. No explicit pressure work term must be present in the energy balance.
The reasoning is extended to the case of fluid saturated porous media.Comment: 14 pages, 2 figures, 1 table, submitted for publicatio
Encapsulation of phosphorus dopants in silicon for the fabrication of a quantum computer
The incorporation of phosphorus in silicon is studied by analyzing phosphorus
delta-doped layers using a combination of scanning tunneling microscopy,
secondary ion mass spectrometry and Hall effect measurements. The samples are
prepared by phosphine saturation dosing of a Si(100) surface at room
temperature, a critical annealing step to incorporate phosphorus atoms, and
subsequent epitaxial silicon overgrowth. We observe minimal dopant segregation
(5 nm), complete electrical activation at a silicon growth temperature of 250
degrees C and a high two-dimensional electron mobility of 100 cm2/Vs at a
temperature of 4.2 K. These results, along with preliminary studies aimed at
further minimizing dopant diffusion, bode well for the fabrication of
atomically precise dopant arrays in silicon such as those found in recent
solid-state quantum computer architectures.Comment: 3 pages, 4 figure
The micrometeoroid complex and evolution of the lunar regolith
The interaction of the micrometeoroid complex with the lunar surface is evidenced by numerous glass-lined microcraters on virtually every lunar surface exposed to space. Such craters range in size from less than .1 micron to approximately 2 sq cm diameter. Using small scale laboratory cratering experiments for calibration, the observed crater-sized frequency distributions may be converted into micrometeoroid mass distributions. These lunar mass distributions are in essential agreement with satellite data. Some physical properties of micrometeoroids may be deduced by comparing lunar crater geometries with those obtained in laboratory experiments. The proponderance of circular outlines of lunar microcraters necessitates equidimensional, if not spherical, micrometeoroids
Non-Oberbeck-Boussinesq effects in turbulent thermal convection in ethane close to the critical point
As shown in earlier work (Ahlers et al., J. Fluid Mech. 569, p.409 (2006)),
non-Oberbeck Boussinesq (NOB) corrections to the center temperature in
turbulent Rayleigh-Benard convection in water and also in glycerol are governed
by the temperature dependences of the kinematic viscosity and the thermal
diffusion coefficient. If the working fluid is ethane close to the critical
point the origin of non-Oberbeck-Boussinesq corrections is very different, as
will be shown in the present paper. Namely, the main origin of NOB corrections
then lies in the strong temperature dependence of the isobaric thermal
expansion coefficient \beta(T). More precisely, it is the nonlinear
T-dependence of the density \rho(T) in the buoyancy force which causes another
type of NOB effect. We demonstrate that through a combination of experimental,
numerical, and theoretical work, the latter in the framework of the extended
Prandtl-Blasius boundary layer theory developed in Ahlers et al., J. Fluid
Mech. 569, p.409 (2006). The latter comes to its limits, if the temperature
dependence of the thermal expension coefficient \beta(T) is significant.Comment: 18 pages, 15 figures, 3 table
Impact of the growth temperature on the performance of 1.70-eV Al 0.22 Ga 0.78 As solar cells grown by MBE
Growth of high material quality Aluminum Gallium Arsenide (AlxGa1-xAs) is known to be challenging, in particular with an Al content x above 20%. As a result, the use of AlxGa1-xAs in devices requiring high minority carrier lifetimes, such as solar cells, has been limited. Nonetheless, it has long been established that the substrate temperature is a key parameter in improving AlxGa1-xAs material quality. In order to optimize the growth temperature of 1.70-eV Al0.22Ga0.78As solar cells, five samples have been grown by Solid-Source Molecular Beam Epitaxy (SSMBE) at 580 °C, 600 °C, 620 °C, 640 °C, and 660 °C, respectively. A strong improvement in performance is observed with increasing the growth temperature from 580 °C to 620 °C. An open-circuit voltage above 1.21 V has in particular been demonstrated on the sample grown at 620 °C, translating into a bandgap-voltage offset Woc below 0.5 V. Above 620 °C, performances – in particular the short-circuit current density – moderately decrease. This trend is confirmed by photoluminescence, current density versus voltage characterization under illumination, and external quantum efficiency measurements
Al0.2Ga0.8As solar cells monolithically grown on Si and GaAs by MBE for III-V/Si tandem dual-junction applications
Al0.2Ga0.8As photovoltaic solar cells have been monolithically grown on silicon substrates by Molecular Beam Epitaxy. Due to the 4% lattice mismatch between AlGaAs and Si, Threading Dislocations (TDs) nucleate at the III-V/Si interface and propagate to the active region of the cells where they act as recombination centers, reducing the performances of the devices. In order to reduce the Threading Dislocation Density (TDD) in the active layers of the cells, InAlAs Strained Layer Superlattice (SLS) Dislocation Filter Layers (DFLs) have been used. For one of the samples, in-situ Thermal Cycle Annealing (TCA) steps have additionally been performed during growth. For comparison purposes, reference Al0.2Ga0.8As solar cells have been grown lattice-matched on GaAs. For the sample grown on Si without TCA, the TDD has been reduced from over 7×109cm-2 at the III-V/Si interface to 3×107cm-2 in the base of the cells. With TCA, the TDD has been reduced throughout the sample from over 3×109cm-2 in the initial epilayers to 8(±2)×106cm-2 in the base of the cells. For the best devices, the Voc improves from 833mV on Si without TCA to 895mV using TCA, compared with 1070mV for the reference sample grown lattice-matched on GaAs. Similarly the fill factor improves from 73.7% on Si without TCA to 74.8% using TCA, compared with 78.4% on GaAs. The high bandgap-voltage offset obtained both on Si and GaAs indicates a non-optimal bulk AlGaAs material quality due to non-ideal growth conditions
The micrometeoroid complex and evolution of the lunar regolith
Monte Carlo-based computer calculations, as well as analytical approaches utilizing probabilistic arguments, were applied to gain insight into the principal regolith impact processes and their resulting kinetics. Craters 10 to 1500 m in diameter are largely responsible for the overall growth of the regolith. As a consequence the regolith has to be envisioned as a complex sequence of discrete ejecta blankets. Such blankets constitute first-order discontinuities in the evolving debris layer. The micrometeoroid complex then operates intensely on these fresh ejecta blankets and accomplishes only in an uppermost layer of approximately 1-mm thickness. The absolute flux of micrometeoroids based on lunar rock analyses averaged over the past few 10 to the 6th power years is approximately an order of magnitude lower than presentday satellite fluxes; however, there is indication that the flux increased in the past 10 to the 4th power years to become compatible with the satellite data. Furthermore, there is detailed evidence that the micrometeoroid complex existed throughout geologic time
Rayleigh-B\'{e}nard convection in a homeotropically aligned nematic liquid crystal
We report experimental results for convection near onset in a thin layer of a
homeotropically aligned nematic liquid crystal heated from below as a function
of the temperature difference and the applied vertical magnetic
field and compare them with theoretical calculations. The experiments cover
the field range 8 \alt h \equiv H/ H_{F} \alt 80 ( is the
Fr\'eedericksz field). For less than a codimension-two field the bifurcation is subcritical and oscillatory, with travelling- and
standing-wave transients. Beyond the bifurcation is stationary and
subcritical until a tricritical field is reached, beyond which it
is supercritical. The bifurcation sequence as a function of found in the
experiment confirms the qualitative aspects of the theoretical predictions.
However, the value of is about 10% higher than the predicted value and
the results for are systematically below the theory by about 2% at small
and by as much as 7% near . At , is continuous within
the experimental resolution whereas the theory indicates a 7% discontinuity.
The theoretical tricritical field is somewhat below the
experimental one. The fully developed flow above for is
chaotic. For the subcritical stationary bifurcation also
leads to a chaotic state. The chaotic states persist upon reducing the Rayleigh
number below , i.e. the bifurcation is hysteretic. Above the tricritical
field , we find a bifurcation to a time independent pattern which within
our resolution is non-hysteretic.Comment: 15 pages incl. 23 eps figure
Diversity Outbred Mice at 21: Maintaining Allelic Variation in the Face of Selection
Multi-parent populations (MPPs) capture and maintain the genetic diversity from multiple inbred founder strains to provide a resource for high-resolution genetic mapping through the accumulation of recombination events over many generations. Breeding designs that maintain a large effective population size with randomized assignment of breeders at each generation can minimize the impact of selection, inbreeding, and genetic drift on allele frequencies. Small deviations from expected allele frequencies will have little effect on the power and precision of genetic analysis, but a major distortion could result in reduced power and loss of important functional alleles. We detected strong transmission ratio distortion in the Diversity Outbred (DO) mouse population on chromosome 2, caused by meiotic drive favoring transmission of the WSB/EiJ allele at the R2d2 locus. The distorted region harbors thousands of polymorphisms derived from the seven non-WSB founder strains and many of these would be lost if the sweep was allowed to continue. To ensure the utility of the DO population to study genetic variation on chromosome 2, we performed an artificial selection against WSB/EiJ alleles at the R2d2 locus. Here, we report that we have purged the WSB/EiJ allele from the drive locus while preserving WSB/EiJ alleles in the flanking regions. We observed minimal disruption to allele frequencies across the rest of the autosomal genome. However, there was a shift in haplotype frequencies of the mitochondrial genome and an increase in the rate of an unusual sex chromosome aneuploidy. The DO population has been restored to genome-wide utility for genetic analysis, but our experience underscores that vigilant monitoring of similar genetic resource populations is needed to ensure their long-term utility
Factors Affecting European Farmers’Participation in Biodiversity Policies
This article reports the major findings from an interdisciplinary research project that synthesises key insights into farmers’ willingness and ability to co-operate with biodiversity policies. The results of the study are based on an assessment of about 160
publications and research reports from six EU member states and from international comparative research.We developed a conceptual framework to systematically review the
existent literature relevant for our purposes. This framework provides a common structure for analysing farmers’ perspectives regarding the introduction into farming practices of measures relevant to biodiversity. The analysis is coupled and contrasted with a survey of experts. The results presented above suggest that it is important to view support for practices oriented towards biodiversity protection not in a static sense – as a situation determined by one or several influencing factors – but rather as a process marked by interaction. Financial compensation and incentives function as a necessary, though
clearly not sufficient condition in this process
- …